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Abstract

In the last few decades, optimisation problems in maritime transportation have re-
ceived increased interest from researchers, since the huge size of the maritime trans-
portation industry means that even small improvements in efficiency carry a high
potential benefit.

One area of maritime transportation that has remained under-researched is the
impact of draft restrictions at ports. Many ports have restrictions on ship draft (dis-
tance between the waterline and the keel) which vary over time due to variation
in environmental conditions. However, existing optimisation problems in maritime
transportation ignore time variation in draft restrictions, thus potentially missing out
on opportunities to load more cargo at high tide when there is more water available
for the ship to sail in, and more cargo can be loaded safely.

This thesis introduces time-varying restrictions on ship draft into several optimi-
sation problems in the maritime industry. First, the Bulk Port Cargo Throughput
Optimisation Problem is introduced. This is a novel problem that maximises the
amount of cargo carried on a set of ships sailing from a draft-restricted bulk ex-
port port. A number of approaches to solving this problem are investigated, and a
commercial system – DUKC R© Optimiser – based on this research is discussed. The
DUKC R© Optimiser system won the Australia-wide NASSCOM Innovation Student
Award for IT-Enabled Business Innovation in 2013. The system is now in use at Port
Hedland, the world’s largest bulk export port, after an investigation showed that it
had the potential to increase export revenue at the port by $275 million per year.

The second major contribution of this thesis is to introduce time-varying restric-
tions on ship draft into several larger problems involving ship routing and schedul-
ing with speed optimisation, starting from a problem involving optimising speeds for
a single ship travelling along a fixed route, and extending this approach to a cargo
routing and scheduling problem with time-varying draft restrictions and speed opti-
misation.

Both the Bulk Port Cargo Throughput Optimisation Problem and the speed opti-
misation research shows that incorporating time-varying draft restrictions into mar-
itime transportation problems can significantly improve schedule quality, allowing
more cargo to be carried on the same set of ships and reducing shipping costs.

Finally, this thesis also considers issues beyond time-varying draft restrictions
in the maritime industry, and investigates approaches in the literature for solving
optimisation problems with time-varying action costs. Several approaches are in-
vestigated for their potential to be generalisable between different applications, and
faster, more efficient approaches are found for both the Bulk Port Cargo Throughput
Optimisation problem, and another problem in maritime transportation – the Liner
Shipping Fleet Repositioning Problem.
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Chapter 1

Introduction

Maritime transportation is one of the most important forms of freight transportation,
with over 8 billion tonnes of goods per year transported by sea [UNCTAD, 2011].
With the huge volumes of goods being transported, there is a high potential for cost
optimisation in the maritime shipping industry. There has been significant interest
in recent years on optimisation problems in maritime logistics, but this area is still
under-researched compared to land and air transportation, as discussed in two recent
reviews of the maritime transportation literature: Christiansen, Fagerholt, and Ronen
[2004] and Christiansen et al. [2013]. Though maritime shipping has been tradition-
ally a conservative industry, computerised decision support systems are beginning
to be more frequently accepted as their benefits are becoming more clear [Fagerholt,
2004].

This thesis investigates several optimisation problems in the maritime transporta-
tion field, particularly focussing on scheduling and routing problems. Scheduling
problems typically aim to select execution times for a set of tasks so as to optimise
some cost or value function, subject to problem-specific constraints, particularly on
the availability of resources such as machines. Traditional scheduling problems usu-
ally aim to minimise the makespan, or total time, of the resulting schedule, though
more complex cost functions have also been investigated.

Routing problems have many similarities with scheduling – both have actions that
need to be scheduled in time, both may have resource constraints and constraints on
setup (waiting) time between actions, and both have some cost function that needs to
be optimised. However, the pickup and delivery tasks being scheduled in a routing
problem have durations that depend on the relative locations of pickup and delivery
nodes in space, and thus vary with the order of actions, whereas in a pure scheduling
problem, action durations are generally fixed and do not depend on order, though
some scheduling problems do involve sequence-dependent setup times between ac-
tions.

Optimisation problems in the maritime transportation domain typically focus on
minimising the cost or maximising the profit of some aspect of maritime industry
operations, such as the cost required to transport a fixed amount of cargo, or the
profit obtained by a shipping company. Alternative objectives may include max-
imising the utilisation of a costly resource such as berths at a port, minimising fuel
usage and carbon dioxide emissions, or optimising customer satisfaction. These ob-
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jectives are similar to those found in ground, rail and air transportation; however,
the constraints involved in maritime shipping may differ substantially. The large
value of even a small percentage reduction in global shipping costs makes maritime
transportation problems an area of great potential for future research.

One consideration in maritime logistics which does not occur in other modes of
transportation is that most ports have restrictions on the draft of ships that are able
to safely enter and leave the port. Draft is the distance between the waterline and the
bottom of the ship’s keel, and is a function of the amount of cargo loaded onto the
ship. Ships with a deep draft may risk running aground in shallow water, therefore
most ports restrict ship sailing drafts using safety rules that estimate the under-keel
clearance (UKC) – the depth of water under a ship’s keel.

These safety rules are dependent on environmental conditions such as tide, waves
and currents, and therefore in practice, the allowable sailing draft at most ports
varies with time. Existing ship scheduling algorithms either ignore draft constraints
entirely, for example Fagerholt [2004]; Norstad, Fagerholt, and Laporte [2011], or
only consider draft constraints that are do not vary with time [Christiansen et al.,
2011; Rakke et al., 2011]. This may result in suboptimal solutions, where ships sail
with less cargo than they could have carried if the algorithm had considered the
possibility of sailing with a higher draft at high tide.

This dissertation investigates the question: what is the impact of considering draft
restrictions on ship scheduling?

The main thesis of this dissertation is that accurate consideration of time-varying
draft restrictions in maritime transportation problems can result in reduced shipping
costs or increased cargo throughput by taking advantage of the opportunity to load
more cargo at high tide. We introduce time-varying draft restrictions into a number
of maritime transportation problems, and show that this approach can significantly
reduce shipping costs, as well as increase revenue for shippers by allowing more
cargo to be transported on the same set of ships.

1.1 Contributions

There are three main areas of contribution consisting of three main novel problems
investigated in this thesis:

1. Introducing the novel Bulk Port Cargo Throughput Optimisation Problem (BPC-
TOP) with time-varying drafts, and investigating a number of approaches to
solving it.

2. Adding time-varying draft restrictions to the ship routing and scheduling prob-
lem with speed optimisation.

3. A more general investigation of scheduling and routing problems with time-
varying cost functions in related fields.

First, we introduce the novel problem of optimising cargo throughput at a bulk
export port with time-varying draft restrictions – the Bulk Port Cargo Throughput
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Optimisation Problem (BPCTOP). This problem is motivated by a real port – Port
Hedland in Western Australia, the world’s largest bulk export port, which is draft-
restricted and has up to six metres difference between high and low tides, and can
therefore benefit significantly from optimising ship schedules with draft restrictions
taken into account.

The Bulk Port Cargo Throughput Optimisation Problem involves scheduling ship
sailing times at only one port; however, even at one port, this is quite a challenging
problem, since it involves complex resource constraints and interactions between
ships. The high tidal variation means that the draft changes significantly even in as
short a time as five minutes. Since the allowable sailing draft for a ship cannot be
specified by any simple equation, the problem needs to be modelled using a very
fine time-indexed formulation. Typical ship scheduling and routing problems can
be modelled with a time resolution of hours or even days; however, introducing
time-varying drafts requires increasing the resolution to intervals on the order of
five minutes, resulting in large domains for the decision variables, and making the
problem more difficult to solve.

We create a Constraint Programming model for the BPCTOP and investigate a
number of approaches to modelling different aspects of the problem. One part of the
problem that is particularly challenging to model is the constraints on the availability
of tugs – small boats that are used to assist ships entering and leaving the port.
Tug constraints are very complex, since the minimum duration of a tug’s action in
assisting a ship depends on the destination of the current ship, as well as the origin of
the next ship, since travel time between these locations needs to be taken into account.
We considered three approaches to modelling tugs, and were able to take advantage
of features of the problem to simplify tug constraints and create a tractable model
that was able to solve realistic sized problems within five minutes. The CP model is
also compared against a Mixed Integer Programming model, with the finding that a
CP solver with a good choice of search strategy is able to prove optimality faster for
most problem instances.

We also investigate a number of user-defined search strategies for solving the
BPCTOP CP model to optimality, and find that the choice of search strategy has a
significant impact on the time taken to prove optimality for this problem. We also
investigate a logic-based Benders decomposition approach for solving the BPCTOP,
with two different approaches to Benders cuts considered. Finally, we investigate
three improvements to the CP model, and find that some minor changes to the CP
model result in significantly faster calculation times, due to taking advantage of im-
plementation details of the CP solver which make some constraints more efficient
to apply than others. Some improvements to the CP model also affect which search
strategies are the fastest to solve the problem to optimality. These investigations of
calculation speed use a constructed data set which allows greater control of problem
characteristics, thus giving additional information on what types of problems are
most difficult to solve using different approaches, and allowing us to test our ap-
proach on larger problems than the current record at the world’s largest bulk export
port.
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While these results are quite solver- and problem-specific, the broader implication
of these results is that Constraint Programming approaches for solving new problems
should consider the choice of model, solver and user-defined search strategy as an
interacting system, rather than in isolation, as the calculation speed is affected by
the interaction between these three factors. The results of our investigation into
CP model improvements and user-defined search strategies for the BPCTOP also
suggests a number of improvements for the G12 finite domain CP solver which we
use to solve the CP model for the BPCTOP.

The best CP model with the fastest user-defined search strategy has been incorpo-
rated into a commercial system for scheduling ships at a port – DUKC R© Optimiser.
This system is now in use at Port Hedland in Western Australia, the world’s largest
bulk export port, after comparisons of DUKC R© Optimiser results against schedules
produced by human schedulers at Port Hedland showed that the system had the
potential to increase export revenue at the port by US$275 million per year. These
comparisons of DUKC R© Optimiser results against real schedules from Port Hedland
are presented in Chapter 5, along with a few simple examples to illustrate why the
system is able to find schedules which allow ships to carry more cargo compared
to approaches typically used by human schedulers. The DUKC R© Optimiser system
was awarded the NASSCOM Innovation Student Award for IT-Enabled Business In-
novation in 2013 [Consensus Group, 2013].

Chapter 6 presents the second main contribution of this thesis by introducing
time-varying draft restrictions into a larger bulk ship routing and scheduling prob-
lem with speed optimisation, building on the work of Norstad, Fagerholt, and La-
porte [2011], who investigated ship speed optimisation for a bulk ship routing and
scheduling problem. Optimising ship sailing speeds has been widely investigated
in recent years, since rising fuel prices have made fuel costs comprise a larger pro-
portion of total shipping costs, and fuel usage is a function of ship speed. How-
ever, draft restrictions affect allowable sailing windows at ports and draft-constrained
waypoints, which may affect the optimal speed for ships. It is therefore worthwhile
to consider these two aspects of ship scheduling in combination.

We start by incorporating time-varying draft restrictions into a simple subprob-
lem – speed optimisation for a single ship travelling along a fixed route. We extend
the recursive smoothing algorithm introduced by Norstad, Fagerholt, and Laporte
[2011] to be able to handle our more complex problem, with multiple time windows,
one around each high tide, as well as a non-monotonic cost function that takes into
account not only fuel usage, but also ship draft as well as the opportunity cost of
not being able to use the ship for other voyages if the duration of the current voyage
takes longer due to sailing at a slower speed. We compare our approach against an
alternative way of handling draft restrictions – having the ship wait at draft-restricted
waypoint until the tide rises high enough for it to sail – and find that considering
time-varying draft restrictions in ship speed optimisation reduces costs by an average
of 22%.

The speed optimisation problem for a single ship travelling along a fixed route
with draft-restricted waypoints is then used as a subproblem in solving the larger
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bulk ship routing and scheduling problem with speed optimisation and time-varying
draft restrictions. We compare four ways of solving this problem:

1. Considering both time-varying draft restrictions and resource conflicts between
ships at waypoints in speed optimisation.

2. An approach that considers time-varying draft restrictions in the speed opti-
misation problem but ignores resource conflicts between ships, thus requiring
ships to wait for each other to sail.

3. Ignoring draft restrictions in speed optimisation and having ships wait for the
tide to rise if required, as well as waiting for other ships to sail.

4. Sailing at a fixed service speed and waiting at waypoints for the tide to rise as
well as for other ships.

Considering time-varying draft restrictions in speed optimisation results in a 22%
reduction in shipping cost on average for our problem instances compared to sailing
at a fixed service speed. The method presented by Norstad, Fagerholt, and Laporte
[2011] of optimising speeds without considering draft constraints and resource con-
flicts at waypoints results in a 15% reduction in shipping cost compared to sailing
at service speed. Considering resource conflicts at waypoints resulted in a small
additional reduction in cost, about 2% more than speed optimisation with time-
varying draft restrictions alone. These results show that considering time-varying
draft restrictions in maritime optimisation problems can result in a substantial bene-
fit to industry, and we hope that more maritime logistics researchers will incorporate
time-varying draft restrictions into their models in future.

The third main contribution of this thesis is to look beyond the specific problem of
time-varying draft restrictions in maritime optimisation, to consider the more general
problem of scheduling and routing with time-varying costs. The time-varying cost
function is one of the main sources of complexity for the problems considered in this
thesis. Other routing and scheduling problems in related fields have also considered
time-varying action costs, so the final chapter in this thesis summarises how related
problems in other fields have dealt with time-varying costs, and investigates the
potential of generalising some of these approaches between different applications.

Traditional approaches to routing and scheduling problems with time-varying
costs include Mixed Integer Programming and local search, as well as more com-
plex solve-and-improve approaches. We present a Constraint Programming model
for another maritime transportation problem with time-varying costs – the Liner
Shipping Fleet Repositioning Problem (LSFRP), which involves finding cost-optimal
ways to move ships between services in a liner shipping network – and find that
the CP model outperforms earlier Mixed Integer Programming and automated plan-
ning models. This result, together with the earlier results for the BPCTOP, show that
Constraint Programming is a useful technique that may be worth investigating for
other problems which are traditionally solved using Mixed Integer Programming,
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even though, as discussed earlier, the performance of Constraint Programming ap-
proaches is highly dependent on the choice of model, solver and search strategy.

We also investigate the effectiveness of a new CP solver on both the LSFRP and
BPCTOP. This solver uses Lazy Clause Generation, a recently introduced technique
which allows a CP solver to learn areas of the search space where no good solutions
have previously been found, and speed up the search by avoiding them in future. We
find that the LCG solver outperforms traditional finite domain CP solvers on both
the LSFRP and BPCTOP.

We also compare the CP model and LCG solver for our problems against a more
typical approach to speeding up calculation of a problem with time-varying costs –
a solve-and-improve method which first solves a simplified version of the problem
without time-varying costs, then uses the real cost function to improve the solution.
We find that, while the simplified models for both problems are faster to solve than
the original approach, the speed improvement provided by the solve-and-improve
method is lower than that obtained by the CP model for the LSFRP and the LCG
solver for the BPCTOP.

Finally, we investigate a novel approach to solving the BPCTOP by modelling
it as a Vehicle Routing Problem with Soft Time Windows (VRPSTW) and using an
existing fast VRP solver to solve this problem. We find that modelling a scheduling
problem as a VRP can be an efficient way to get good quality solutions, though the
VRP solver has limitations on the kinds of constraints that can be modelled, which
limits the types of scheduling problems that can be solved using this approach, and
in the case of the BPCTOP, limits the accuracy of the resulting solutions.

These results show that there is scope for generalisation of approaches between
scheduling and routing problems with time-varying costs in related fields, and fur-
thermore, that some approaches such as Constraint Programming and Lazy Clause
Generation can outperform methods traditionally used for such problems such as
Mixed Integer Programming.

1.2 Thesis Outline

This thesis is formatted as follows.

• Chapter 2 introduces the reader to the maritime transportation industry and
presents a review of optimisation problems in maritime logistics. This chapter
also introduces a number of techniques used to solve transportation problems,
such as Constraint Programming, Mixed Integer Programming and Benders
Decomposition. This chapter also presents an overview of how draft restric-
tions are calculated at ports, as well as how draft constraints have been con-
sidered to date in maritime transportation research. This is by no means an
exhaustive review of either the maritime transportation literature, or of opti-
misation techniques, but it is intended as an introduction for readers new to
the maritime field, or unfamiliar with some of the methods discussed in this
dissertation.
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• Chapter 3 introduces the Bulk Port Cargo Throughput Optimisation Problem
with time-varying draft restrictions. We present a Constraint Programming
(CP) model for this problem, and discuss a number of approaches for modelling
the most complex part of this problem – constraints on the availability of tugs.

• In Chapter 4, we investigate the scalability of our CP model for realistic problem
sizes, and we compare a number of search strategies for solving this model.
We also compare our CP model against a Mixed Integer Programming (MIP)
model for this problem, as well as against a Benders Decomposition approach
that breaks the model up into a master and subproblem, both of which can be
implemented as either CP or MIP models. Finally, this chapter investigates a
number of variations on our initial CP model aimed at improving scalability.

• In Chapter 5, we discuss DUKC R© Optimiser, the commercial software system
for scheduling ship sailing times that has been implemented based on our BPC-
TOP models. Comparisons of DUKC R© Optimiser results against human sched-
ulers on real data are also presented in this chapter.

• Chapter 6 incorporates time-varying draft restrictions into two more problems
in maritime logistics – the problems of ship speed optimisation for a single ship
travelling along a fixed route, and the problem of ship scheduling and routing
with variable speeds and time-varying draft restrictions. We compare our re-
sults for both problems against approaches that optimise speed while ignoring
time-varying draft constraints, as well as against traditional approaches that
ignore draft and use fixed ship speeds.

• In Chapter 7, we consider our work in the more general context of scheduling
and routing problems with time-dependent cost functions, and compare several
approaches that have been used to solve related problems in other fields. We
also investigate the effectiveness of several of these approaches for a related
problem with time-dependent costs – the Liner Shipping Fleet Repositioning
Problem (LSFRP). The LSFRP is a problem first introduced by Kevin Tierney,
and the sections on the LSFRP presented in this chapter are joint work with
Kevin Tierney. Other chapters are primarily the author’s work, with feedback
and suggestions from numerous people as listed in the acknowledgements.

• Chapter 8 presents concluding remarks and several avenues for future work
arising from this research.

Parts of this thesis have previously been published as:

• Kelareva et al. [2012b] – short conference paper; brief summary of Chapter 3
and parts of Chapter 4.

• Kelareva et al. [2012a] – Chapter 3 and parts of Chapter 4.

• Kelareva [2011] – parts of Chapter 5.
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• Kelareva [2012] – parts of Chapter 5.

• Kelareva et al. [2013] – short conference paper; brief summary of parts of
Chapter 6.

• Kelareva, Tierney, and Kilby [2013a] – parts of Chapter 7.

• Kelareva, Tierney, and Kilby [2013b] – Chapter 7.



Chapter 2

Background

This chapter presents an overview of optimisation problems in the maritime trans-
portation industry, as well as several general techniques commonly used to solve
these types of problems which are also used in this thesis. This chapter also dis-
cusses how draft restrictions at ports are calculated in practice, as well as how draft
restrictions in maritime transportation problems have been considered in the existing
literature.

This chapter is not an exhaustive survey of the maritime transportation literature;
in particular, only a few problems in container shipping are discussed, as this thesis
focusses primarily on problems in bulk cargo shipping. The section on general op-
timisation techniques written as an introduction for readers unfamiliar with any of
the approaches used in this thesis, and is not intended as an exhaustive survey of the
field of optimisation.

2.1 The Maritime Transportation Industry

Cargo and shipping service types
Commercial shipping services fall into three distinct types – tramp, industrial and

liner.
A liner shipping service operates similarly to a bus timetable, with several vessels

travelling along a fixed route with a fixed timetable. Liner services are typically used
for containers and general cargo. Roll-on Roll-off (RoRo) vessels used to transport
cars and other rolling equipment are also typically part of a liner shipping service.

Tramp ships operate similarly to a taxi company, with tramp ships taking up
contracts of affreightment to transport a specified amount of cargo from an origin to a
destination port within a fixed timeframe for a given price. Tramp ships are typically
used for bulk cargo, and a tramp operator typically tries to maximise the profit
produced by the fleet of ships.

Industrial ships are either owned by the cargo owner, or hired on a time charter
for a fixed period of time. Industrial ships are typically used for high-volume bulk
cargoes such as oil, coal and iron ore.

All three types of cargo ship operators are able to charter additional vessels if
required to meet excess demand, or charter out their own vessels in the event of fleet

9
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capacity exceeding demand.
Non-commercial vessels such as naval vessels are not considered in this thesis, as

they involve quite different problems compared to commercial cargo shipping.

Ships
Ships come in many different sizes, with differing speeds and fuel usages, as well

as capacities of weight and volume of cargo. Ships are also limited in the types of
cargo they can carry – tankers carry liquid bulk cargo; bulk carriers carry dry bulk
such as wheat, timber or ore; container ships carry standard-sized containers used for
transporting packaged goods; Roll-on Roll-off (RoRo) ships are used for transporting
cars or other rolling equipment. Other types of ships include refrigerated vessels
used to transport cargo that requires refrigeration such as meat or vegetables, and
Liquefied Natural Gas (LNG) carriers, used to carry pressurised, refrigerated gas.
Bulk ships may be able to carry either one type of cargo, or several types of cargo in
separate compartments, possibly with constraints on the types of cargo that may be
transported in each compartment, or the types of cargo that may be stored adjacent
to each other.

Ship sizes vary significantly, with ships falling into several main size classes based
on their dimensions and deadweight tonnage (DWT) – the total weight the ship can
safely carry, including all extras such as fuel, ballast and crew. The most commonly
used size categories for dry cargo as listed in the UNCTAD [2012] Review of Mar-
itime Transport and Rodrigue, Comtois, and Slack [2013] are:

1. Handysize – small bulk carriers, mostly used for minor bulk products and small
ports. 10,000 – 34,999 DWT.

2. Handymax – slightly larger than Handysize: 35,000 – 54,999 DWT.

3. Panamax – the largest ship size that can travel through the Panama canal: 55,000
– 84,999 DWT; breadth < 32.31m. This size class is used for both bulk carriers
and tankers.

4. Capesize – large bulk cargo vessels that are too large to pass through the Suez
and Panama canals and must thus travel around the Cape of Good Hope or
Cape Horn to travel between oceans. These vessels are only able to serve ports
with deepwater terminals, and are primarily used to transport raw materials
such as iron ore and coal. The size range is defined slightly differently in
different sources [UNCTAD, 2012; Rodrigue, Comtois, and Slack, 2013], but
generally includes ships larger than Panamax, ie. 80,000+ DWT, breadth >
32.31m.

5. Very Large Ore Carrier / Ultra Large Ore Carrier – 200,000+ DWT and 300,000+
DWT respectively; used for transporting iron ore from Brazil. Only a few ports
worldwide can accommodate vessels of this size.

The main size categories for tankers are:
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1. Aframax – 80,000 – 124,999 DWT, larger than Panamax.

2. Suezmax – the largest ship size that can travel through the Suez canal, 125,000 –
199,999 DWT.

3. Very Large Crude Carrier – 200,000 – 320,000 DWT. Can dock at many terminals,
and can be ballasted through the Suez Canal.

4. Ultra Large Crude Carrier – 320,000+ DWT; can only dock at a few terminals.

Several other ship size classes are the Seawaymax – the largest ships able to pass
through the St Lawrence Seaway; Q-Max or Qatar-max – the largest LNG carriers able
to dock at the Qatar LNG terminal; and Malaccamax – the largest ships able to sail
through the Malacca Strait.

Different ship types and size classes may be subject to different port charges, as
well as variations in safety rules at ports. For example, at Port Hedland in West-
ern Australia, vessel berthing charges depend on the length of the vessel, and pi-
lotage charges depend on the total deadweight tonnage [Port Hedland Port Author-
ity, 2013a]. Different vessel size classes also have different safety requirements for
the number of tugs that must assist the vessel in arriving or departing a berth, and
in entering or leaving the port [Port Hedland Port Authority, 2013c].

Ports
Ports vary in their geography and environmental conditions, which may affect

safety requirements for ships operating in and around the port, including restric-
tions on draft. Each port has a number of berths, with different dimensions and
loading/unloading equipment, which may limit the size and type of ships that can
use each berth. Different loading and unloading equipment may also have varying
loading and unloading rates. Some ports are used for both pickup and delivery of
cargo; many other ports, particularly in the bulk shipping industry, are used almost
exclusively for one or the other.

Some ports or berths may be privately owned, and thus reserved for use by ships
owned or chartered by one company; other berths are public, and may be shared by
ships operated by many different companies, with the port charging fees for docking,
refueling, and other services. The port typically aims to minimise the turnaround
time of ships using the port, as cycling ships through faster increases utilisation of
port facilities and thus port revenue. Ports may also aim to maximise the total cargo
throughput, particularly if they charge fees per tonne of cargo shipped.

One issue that is of importance to ports is queueing rules used to determine the
order in which ships may dock. Many ports use a first-come first-served queueing
system, which is simple to administer, but which results in ships sailing quickly to
reach the port, followed by waiting for up to several weeks in the queue outside the
port. This is highly inefficient, as ships sit idle for weeks at a time, when they could
have sailed slower and used less fuel.

Ports have large and expensive infrastructure, such as berths, tugs (small boats
which may be required to assist ships in entering and leaving the port), land-side
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Figure 2.1: Factors affecting under-keel clearance.

transportation equipment such as ship loaders, cranes and container transport vehi-
cles, cargo storage facilities, and other equipment such as pilot boats used to trans-
port harbour pilots to inbound vessels, and lines boats used to assist in mooring
ships at a berth. Capacity planning for ports is therefore an important and complex
problem, since projects to extend the capacity of a port by extending the infrastruc-
ture, for example by building additional berths or dredging the channel to increase
the allowable ship drafts, can cost billions of dollars [BHP Billiton, 2011]. Optimisa-
tion and other software systems that improve the utilisation of existing port capacity
may also be installed to increase the extra port capacity provided by such projects.

2.1.1 Draft Restrictions at Ports

Draft is the distance between the waterline and the ship’s keel. Most ports have safety
restrictions on the draft of ships allowed to transit through the channel to reduce
the risk of deep-draft ships running aground in shallow water. At draft-restricted
ports, accurate modelling of draft constraints allows more cargo to be loaded onto
each ship in good environmental conditions without compromising safety, which
increases profit for shipping companies. In practice, draft constraints at ports are
usually calculated by estimating the under-keel clearance of a ship – the amount of
water under the ship’s keel.

The equations used to calculate under-keel clearance calculations vary between
ports. Some ports use simple static estimates of under-keel clearance, which do not
consider any live measurements of environmental conditions, and which must there-
fore be very conservative to maintain safety. In recent years, some ports have begun
to use more sophisticated systems which incorporate live environmental forecasts
and measurements to produce more accurate estimates of under-keel clearance, and
therefore can allow ships to sail with a higher draft on average, while maintaining
safety. The Dynamic Under-Keel Clearance (DUKC R©) software developed by OMC
International, which is the only commercial software to estimate under-keel clear-
ance using live environmental conditions, has allowed ships to sail with up to two
metres of extra draft in some environmental conditions, producing large economic
benefits for ports [O’Brien, 2002].
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Figure 2.2: Ship squat [Barrass, 2004]

Factors which affect the under-keel clearance of a ship (shown in Figure 2.1)
include:

• the depth of water at each point along the channel.

• the predicted tide height at the time the ship will be transiting through the
channel.

• the draft of the ship.

• squat – a phenomenon caused by the Bernoulli effect, which causes a ship trav-
elling faster in shallow water to sit lower in the water, as illustrated in Fig-
ure 2.2 [Barrass, 2004].

• heel – the effect of a ship leaning to one side under the effect of centripetal force
due to turning, or due to the force of wind. Heel causes one side of the ship
to sit lower in the water, thus decreasing under-keel clearance, as illustrated in
Figure 2.3.

• wave response – the vertical component of a ship’s motion in response to waves,
as illustrated in Figure 2.4.

Other factors may play a part at specific ports, for example, the changing density
of water may affect under-keel clearance at estuary ports where the salinity, and
therefore density, of the water varies at different locations along the channel, and
at different times in the tide cycle. See O’Brien [2002] for a detailed overview of
under-keel clearance at ports.

Equation (2.1) shows an example under-keel clearance constraint for a port. A
vessel v will be allowed sail at time t if the constraint expressed in Equation (2.1) is
met, ie. if the sum of the positive UKC factors (depth D and tide height T), minus
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Figure 2.3: Effect of ship heeling on under-keel clearance

Figure 2.4: Vertical components of ship response to waves

the sum of the negative UKC factors (draft d, squat s, heel h, wave response w, etc)
exceeds some safety factor F.

D(t) + T(t)− d(v)− s(v, t)− h(v, t)− w(v, t) ≥ F (2.1)

Ports may also have additional safety requirements that limit the times at which
ships may sail, for example, some ports may have strong currents that restrict the
times when large ships may transit the channel. Other ports do not allow high-risk
ships such as oil tankers to transit outside of daylight hours.
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2.1.2 Optimisation Problems in Maritime Transportation: Introduction

Optimisation problems in maritime transportation are traditionally divided into three
levels: strategic, tactical and operational, based on the time-frame of decision-making.
However, there is substantial overlap between these levels, partly because of unclear
boundaries between them, and partly because even high-level problems like fleet
size and mix or port capacity planning will depend on the details of the day-to-day
demand for the resources in question.

Strategic planning problems include port capacity planning; optimisation of ship-
ping fleet size and mix; liner shipping service and network design; and supply chain
design.

Tactical planning problems include bulk cargo routing and scheduling; liner fleet
deployment – the process of assigning ships to liner shipping routes; the Liner Ship-
ping Fleet Repositioning Problem (LSFRP), which aims to minimise the cost of mov-
ing a ship between different liner routes; the Berth Allocation Problem; and the
Maritime Inventory Routing (MIR) problem – the combined problem of coordinat-
ing inventory at various stages of a supply chain, as well as minimising the cost of
routing cargo.

The boundary between tactical and operational planning problems is often un-
clear, but some problems clearly fall into the short-term operational planning hori-
zon. These include environmental routing – the process of choosing routes that avoid
floating ice or poor weather conditions, or take advantage of ocean currents to re-
duce fuel usage or travel times; and problems involving ship speed selection aimed
to minimise fuel costs or emissions from shipping.

Section 2.2 provides an introduction to a number of general techniques that are
used in this thesis, which are commonly used in maritime transportation problems
as well as in related optimisation problems in other fields. Section 2.3 then discusses
a few key optimisation problems in maritime transportation in more detail, partic-
ularly problems in bulk cargo ship routing and scheduling that are most closely
related to the research presented in this thesis.

2.2 General Techniques

In this section we present an overview of optimisation techniques used in this thesis,
which are either commonly used to solve problems in the field of maritime trans-
portation, or techniques that have been used previously for related optimisation
problems in other fields and which may be suitable for solving maritime transporta-
tion problems. These techniques include Mixed Integer Programming and Constraint
Programming, with associated decomposition or simplification techniques such as
Benders decomposition, Dantzig-Wolfe decomposition, set partitioning, Lagrangian
Relaxation and column generation. The recently introduced technique of Lazy Clause
Generation which combines Constraint Programming with propositional satisfiabil-
ity is also discussed. Some maritime transportation problems are closely related to
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planning problems, so methods for solving planning problems are also briefly pre-
sented.

2.2.1 Mixed Integer Programming

Mixed Integer Programming involves minimising or maximising a linear function
subject to linear constraints. Specifically, a Mixed Integer Program has the form:

minimise cTx (2.2)

subject to Ax = b

l ≤ x ≤ u

some or all xj are integers

Mixed Integer Programs are typically solved using a branch-and-bound approach [Land
and Doig, 1960]:

1. Continuous (Linear Programming) relaxation: allow all x to take non-integer
values, and find the optimal real solution for both branches. If this solution
gives integer values for all variables that are required to be integers, then we
are done. Otherwise, do steps 2-4.

2. Branch: find a variable xj that is required to be an integer, which has a non-
integer value in the LP solution, say vj. Create two new subproblems, one
with the added constraint xj ≤ bvjc, and the other with the added constraint
xj ≥ dvje.

3. Bound: the solution to the LP relaxation provides a lower bound on the solution
to the MIP problem. Any feasible integer solution found so far provides an
upper bound, which is updated during the search as better solutions that satisfy
integrality constraints are found. These upper and lower bounds can be used to
prune branches during the search: if the lower bound for any branch is above
the upper bound found so far, that branch cannot provide any better quality
solutions, and can be pruned.

4. Solve subproblems: recursively solve the two subproblems created by branch-
ing using steps 1-4, until either a) the optimal solution to the continuous re-
laxation is infeasible, or b) the optimal solution to the continuous relaxation
satisfies integrality constraints, or c) the branch can be pruned by step 3.

Other methods used for solving Mixed Integer Programs include:

1. The cutting planes method, which repeatedly finds optimal solutions under a
continuous relaxation and adds additional inequalities or cuts to separate non-
integer optimal solutions away from the feasible set.

2. Branch-and-cut, which combines a branch-and-bound search with cutting planes
used to tighten the continuous relaxation at each step of the branch-and-bound.
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3. Column generation, a method for solving large Mixed Integer Programs that
would be infeasible to solve directly, by considering only a subset of variables
at a time, repeatedly adding new variables (columns) that can improve the
solution.

4. Dantzig-Wolfe decomposition [Dantzig and Wolfe, 1960] which splits a problem
into several independent subproblems, and a master problem which enforces
the coupling constraints between the subproblems.

See Wolsey [1998] and Schrijver [1986] for a more detailed introduction to Mixed
Integer Programming.

MIP programs are usually solved using an existing solver, rather than by custom-
building a new solver. Some existing MIP solvers include CPLEX, SCIP, Gurobi and
CBC (Coin-OR).

2.2.2 Constraint Programming

Constraint Programming involves solving problems with more general constraints
than Mixed Integer Programming – constraints and objectives can be non-linear, but
on the other hand, in Constraint Satisfaction Problems (CSPs) and constrained op-
timisation problems, variables can only take discrete values ranging over a finite
domain. Every MIP program with integer-only variables is also a constrained op-
timisation problem that can be solved using a finite domain solver; however MIP
solvers may be able to solve the same set of constraints more efficiently due to being
optimised for quickly solving a problem with linear constraints.

Solvers for CSPs and constrained optimisation problems typically work using
backtracking search. The simplest form of backtracking search would exhaustively
search the entire domain of every variable by assigning variables to values until
either a solution is found or a constraint is violated, then backtracking and trying
other values if an assignment results in some constraint being violated. This is similar
to the branch-and-bound algorithm described above in Section 2.2.1, but backtracking
search for CSPs typically uses depth-first search, where the domain of each variable
is explored completely before exploring other variables.

However, exhaustively searching every combination of variable values is clearly
extremely inefficient even for small variable domains. In practice, CP solvers com-
bine backtracking search with constraint propagation – a method for using constraints
to eliminate parts of the domains of each variable from the search space, thus avoid-
ing having to explore all possible assignments of variables to values. Constraint
propagation uses information about the domains of some variables in a constraint to
eliminate infeasible values from the domains of other variables in the constraint, thus
making the domains consistent with one another. If any variable’s domain becomes
empty, the CSP is unsatisfiable.

Constraint solvers differ in the ways they apply constraint propagation to reduce
variable domains. Three basic constraint propagation rules are node consistency, arc
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consistency and bounds consistency. Node consistency applies constraints with one vari-
able to reduce the domain of that variable, for example, the constraint x > 3 could be
applied to reduce the domain of x from {1, 2, 3, 4, 5} to {4, 5}. Arc consistency applies
constraints with multiple variables to ensure that for every value of each variable,
there exist combinations of values in the domains of the other variables that satisfy
the constraint. For example, variables x, y with domains Dx, Dy are arc consistent
with a constraint if for every value u ∈ Dx there exists a value v ∈ Dy such that
x = u, y = v satisfies the constraint.

Arc consistency becomes very time-consuming to apply for constraints with large
numbers of variables, so a more common form of consistency used for constraints
with many variables is bounds consistency, which applies constraints with multiple
variables to remove extreme values from the range of a variable’s domain, if these
values are inconsistent with the extreme values of other variables in the constraint.
Bounds consistency only needs to consider extreme values of all variables, instead of
searching through all possible combinations of all variables in the constraint, which
makes bounds consistency faster to evaluate than arc consistency for complex con-
straints.

Constraint solvers usually also implement specialised propagators for other con-
straints, which allows problems with those types of constraints to be solved faster
by avoiding exhaustively searching all values. For example, most CP solvers imple-
ment an alldifferent constraint propagator, which can detect that a set of 8 integers
each with the domain {1, 2, 3, 4, 5, 6, 7} cannot be all different, without needing to
exhaustively check every combination of assignments of variables.

Constraint solvers are more flexible than MIP solvers and able to model a wider
range of problems, including those with non-linear constraints; however, as a result
of this flexibility, constraint solvers may be slower than MIP solvers for problems that
are naturally modelled with linear constraints. The efficiency of constraint solvers
for a particular problem may also be highly dependent on the search strategy and
constraint propagators used by the solver. Many solvers therefore allow the search
strategy to be specified by the user so that the best search strategy can be chosen for
the specific model. For example, the user may be able to specify the method used to
select the order of variables to search on, as well as the method used for splitting the
domain of each variable. See Rossi, Van Beek, and Walsh [2006] and Marriott and
Stuckey [1998] for a more detailed introduction to Constraint Programming.

Some constraint programming solvers include Gecode, ECLiPSe, Choco, and the
G12 system which integrates with many CP solvers and includes a number of built-in
solvers such as a finite domain solver (G12-FD) and the CPX solver with Lazy Clause
Generation (see below).

2.2.2.1 Lazy Clause Generation

Lazy Clause Generation (LCG) [Ohrimenko, Stuckey, and Codish, 2009] or Constraint
Programming with learning is a recently introduced technique which has been found
to be effective on a number of scheduling problems [Schutt et al., 2012; Feydy and
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Stuckey, 2009; Chu et al., 2010]. LCG combines a finite domain CP solver with a
propositional satisfiability (SAT) solver by mapping finite domain propagators to
clauses in a SAT solver.

Mapping a complete CP problem to a SAT problem often results in a very large
SAT problem which are intractable for even the best modern SAT solvers. LCG gets
around this limitation by lazily adding clauses to the SAT solver as each finite domain
propagator is executed, precisely at the point when the new clauses are able to trigger
unit propagation. This approach benefits from efficient SAT solving techniques such
as nogood learning and backjumping, while maintaining the flexible modelling of
a CP solver and enabling efficient propagation of complex constraints [Ohrimenko,
Stuckey, and Codish, 2009].

This approach is similar to cutting planes in Mixed Integer Programming, where
additional constraints, or cuts are added to eliminate portions of the search space.
However, in Lazy Clause Generation, the new constraints are automatically com-
bined to form more powerful and more general constraints using methods from SAT.
This allows the solver to learn areas of the search space where it previously failed,
thus avoiding searching infeasible regions in future.

2.2.3 Planning

An automated planning problem involves several variables that can be in any of
several states; a set of actions with prerequisites and effects on variable values; and
an initial condition and goal state. Solving a planning problem requires finding a
sequence of actions to transform the variable values from the initial state to the goal
state, and may also involve optimisation on cost or number of actions.

Methods commonly used to solve planning problems include heuristic search in
the state space, eg. [Bonet and Geffner, 2001]; using a planning graph [Blum and
Furst, 1997] as the basis for heuristic search, eg. [Hoffmann, 2001]; converting the
planning problem to a boolean satisfiability (SAT) problem and solving using one
of the many efficient SAT solvers, eg. [Rintanen, 2010; Castellini, Giunchiglia, and
Tacchella, 2003]; search in a space of partially ordered sets of actions, eg. [Coles et
al., 2010a]; and decomposition approaches, eg. [Amir and Englehart, 2003; Brafman
and Domshlak, 2006].

While some planning problems can be modelled as a Constraint Programing or
Mixed Integer Programming problem, planning in general is a significantly different
problem. CP and MIP are NP-complete problems, whereas Planning is PSPACE-
complete, since Planning can involve an exponential number of actions in the so-
lution, so the solution cannot be checked in polynomial time as is required for an
NP-complete problem. The number of actions in the solution cannot be usefully
bounded in general, whereas CP and MIP both have fixed numbers of variables, and
thus can only be used to model a planning problem with a limited number of actions.
On the other hand, planning problems all have a very specific structure, with actions,
preconditions and effects, which limits the types of problems that planning solvers
are able to solve.
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However, for problems that do have this structure, a planning solver may be
more efficient than a MIP or CP solver, since a planning solver may be able to take
advantage of the tight constraints on preconditions and effects, which limit the ac-
tions can be taken and what actions are required to reach the goal, thus eliminating
large areas of the search space. Tierney et al. [2012a] found that a planning solver
was faster at solving the Liner Shipping Fleet Repositioning Problem than the MIP
solvers which are traditionally used in the liner shipping domain, so planning may
be worth investigating for other maritime problems.

See Ghallab, Nau, and Traverso [2004] for a more detailed introduction to auto-
mated planning.

2.2.4 Decomposition Techniques

Many large optimisation problems are too complex to be solved by standard solvers.
However, decomposition techniques have been successfully used in many domains,
including Mixed Integer Programming [Dantzig and Wolfe, 1960; Benders, 1962],
Constraint Programming [Hooker and Ottosson, 2003] and Planning [Amir and En-
glehart, 2003; Brafman and Domshlak, 2006] to break problems into smaller, more
tractable subproblems.

One method commonly used for solving large Linear Programming and Mixed
Integer Programming problems is Benders decomposition [Benders, 1962], which de-
composes the problem into a master and subproblem which are smaller and more
tractable than the original problem. The two problems are solved iteratively, with the
master problem providing a bound on optimal solution quality, and the subproblem
providing cuts – new constraints – that are used to remove infeasible areas of the mas-
ter problem domain from the search. Benders’ decomposition involves adding new
constraints to the master problem after each iteration of the subproblem, whereas
by contrast, Dantzig-Wolfe decomposition uses column generation, which adds new
variables to the master problem at each iteration.

While Benders decomposition was originally used only for linear and Mixed In-
teger Programming problems, in recent years it has been extended to a logic-based
form that can be used for non-linear Constraint Programming problems [Hooker
and Ottosson, 2003; Hooker, 2007]. Efficient logic-based Benders cuts for schedul-
ing problems have been investigated for a number of objective functions, such as
minimum makespan and minimum total tardiness.

Benders’ decomposition and Dantzig-Wolfe decomposition are both effective tech-
niques for solving large problems that have weakly-interacting variables and con-
straints, ie. problems that have some natural way of breaking them into a master and
subproblem. However, Benders’ decomposition is usable for both MIP and CP.

2.3 Optimisation Problems in Maritime Transportation

This section presents a more detailed review of several optimisation problems in
maritime transportation, mostly routing and scheduling problems in bulk cargo ship-
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ping, which are introduced in Subsection 2.3.1. The rest of this section reviews a
number of specific problems in more depth, particularly problems that are extended
with time-varying draft restrictions or solved with new approaches in the rest of this
dissertation.

Subsection 2.3.2 reviews existing research on the Vehicle Routing Problem with
Soft Time Windows (VRPSTW), as well as ship scheduling and routing problems that
include soft time windows. Soft time windows result in action costs that vary with
time, which is closely related to the effect of adding time-varying draft restrictions
to a maritime transportation problem.

Subsection 2.3.3 presents the literature on ship speed and cost optimisation, with
fuel usage modelled as a function of speed. Some research considers ship speed opti-
misation in the context of a routing and scheduling problem, whereas other research
investigates queueing strategies at ports, or optimising speeds for a ship travelling
along a fixed route.

Subsection 2.3.4 presents the Liner Shipping Fleet Repositioning Problem (LS-
FRP), which deals with minimising the cost of moving container ships between ser-
vices in a liner shipping network. This problem involves both routing and schedul-
ing, as the best route and time for moving each ship must be chosen.

Subsection 2.3.5 presents an overview of problems in maritime transportation
that currently consider draft restrictions, as a comparison of the current state-of-the-
art, before we introduce our first maritime transportation problem with time-varying
draft restrictions in the next chapter.

What we do not cover
Most problems in container shipping are not covered in depth, since optimisation

problems in container shipping are generally focussed on network design, assign-
ment of ships to routes, or land-side container terminal optimisation, which are less
closely related to the problems investigated in this thesis. For a detailed review
of the maritime side of container shipping problems, see Christiansen et al. [2013]
and Christiansen et al. [2007]. For a review of land-side container terminal opera-
tions, see Stahlbock and Voss [2008].

We also generally do not consider problems involving the design and manage-
ment of an individual ship; cargo stowage; naval logistics; and highly specialised
problems in specific industries, such as offshore logistics for transporting cargo be-
tween oil and gas platforms and offshore depots. Many of these types of problems
are discussed by Christiansen et al. [2013] and Christiansen et al. [2007]. Problems in
port capacity planning and design are also omitted; see Agerschou et al. [2004] for
an in-depth overview of this area.

2.3.1 Bulk Cargo Ship Routing and Scheduling

Ship routing problems involve determining the most cost-effective routes for a set of
ships to transport a set of cargoes with fixed origins and destinations. Ship schedul-
ing problems also involve selecting the best sailing times for those ships, subject to
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constraints. In ship scheduling and routing problems, constraints may include the
amount and type of cargo that can be carried on each ship, allowable sailing times,
and other more complex constraints that vary between specific problems.

In bulk cargo shipping, there are two main problem types that involve routing
and scheduling decisions – the cargo routing problem and the maritime inventory rout-
ing problem [Al-Khayyal and Hwang, 2007]. The cargo routing problem involves allo-
cating a fixed set of cargoes to ships, and is a variant of the well-known pickup and
delivery problem. The maritime inventory routing problem involves finding a route
and schedule of ships that maintains inventory quantities at a set of loading and
discharge ports within specified limits – the number of cargoes and their pickup and
delivery windows are not known in advance, and need to be determined as part of
the solution.

Cargo Routing
In cargo routing, cargoes may have associated time windows for pickup and de-

livery, and there may be constraints on which ships may carry which cargoes. Some
problems have considered soft time windows, where there is a penalty for arriv-
ing outside of the customer’s preferred time windows [Fagerholt, 2000, 2001; Chris-
tiansen and Fagerholt, 2002; Gatica and Miranda, 2011]. This scenario matches real-
world conditions more closely, and can allow lower-cost schedules to be found at
a small inconvenience to some customers. Some approaches also consider multi-
ple time windows, for example due to ports being closed overnight or on week-
ends [Christiansen and Fagerholt, 2002; Kobayashi and Kubo, 2010].

Some cargo routing problems only allow ships to carry one cargo at a time [Brown,
Graves, and Ronen, 1987; Fisher and Rosenwein, 1989; Kim and Lee, 1997; Hwang,
2005; Gatica and Miranda, 2011]. However, most problems investigated in recent
years allow multiple cargoes to be carried per ship, subject to capacity constraints
and ship suitability constraints, eg. [Brønmo et al., 2007; Korsvik, Fagerholt, and
Laporte, 2011; Norstad, Fagerholt, and Laporte, 2011].

Some problems may allow splitting a cargo between several ships [Fagerholt,
2004; Korsvik, Fagerholt, and Laporte, 2011], and some problems consider flexible
cargo quantities, where each cargo has a range of quantities that can be transported,
with the revenue being dependent on the actual amount of cargo carried [Brønmo,
Christiansen, and Nygreen, 2007; Korsvik and Fagerholt, 2010; Brønmo, Nygreen,
and Lysgaard, 2010].

If there are insufficient ships to carry all cargoes, the fleet operator may charter
extra ships for a single voyage (spot charters) to transport any excess cargoes. Alter-
natively, if there is excess capacity in the fleet, optional extra cargoes (spot cargoes)
can be carried to gain additional revenue. Some cargo routing problems also consider
decisions on ship speed [Bausch, Brown, and Ronen, 1998; Norstad, Fagerholt, and
Laporte, 2011; Gatica and Miranda, 2011; Psaraftis, 2012]. The approach of Fagerholt
[2001] considered variation in ship speed in post-processing, even though speed was
not a decision variable during the routing. To the author’s knowledge, variable ship
speed has not yet been investigated in the context of maritime inventory routing.
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Maritime Inventory Routing
The maritime inventory routing problem is usually found in the manufacturing in-

dustry, where large quantities of bulk materials are regularly produced at one port,
then shipped to another port for processing. Instead of a pre-determined set of car-
goes, the level of inventory at ports is required to be maintained within given limits,
which may arise from storage capacity constraints, as well as the need to avoid idle
time on expensive processing equipment. The problem may involve only one type of
product [Halvorsen-Weare and Fagerholt, 2013; Song and Furman, 2010], or multiple
types with constraints on what ships can be used to carry which products [Hwang,
2005; Al-Khayyal and Hwang, 2007; Christiansen et al., 2011; Rakke et al., 2011].
Some problems with multiple products only allow ships to carry one product type
at a time [Rakke et al., 2011]. Others allow ships to carry multiple cargoes [Hwang,
2005; Al-Khayyal and Hwang, 2007; Christiansen et al., 2011]. All cargoes have inher-
ently flexible quantities and are split among several ships. As with the cargo routing
problem, spot charters may be used to carry additional cargoes if the fleet capacity is
not sufficient.

The most common solution approaches for the cargo routing problem include
formulating the problem as a MIP model that is then solved using a branch-and-
cut algorithm, column generation or Dantzig-Wolfe decomposition; set partition-
ing models; heuristic search approaches; and less commonly, genetic algorithms.
The maritime inventory routing problem is typically formulated using a MIP model
and solved using branch-and-cut or branch-and-price approaches, heuristic search,
rolling horizon heuristics, or genetic algorithms.

Other Problems
Several routing and scheduling problems in bulk cargo shipping have also been

investigated which do not fall into either of the above problem types.
Rakke et al. [2012] considered a Traveling Salesman Problem (TSP) with draft

limits at ports limiting the order in which ports can be visited. This problem in-
volved routing decisions; however, no scheduling decisions or time windows were
considered. The draft constraints were modelled as constant, rather than varying
over time.

On the other hand, the problem of optimising ship speeds along a fixed route,
investigated by Ronen [1982]; Fagerholt, Laporte, and Norstad [2010]; Meng and
Wang [2011] involves no routing decisions, since the route is provided as input to the
problem, but does involve scheduling decisions on the time when each ship arrives
and departs from each port.

Another problem which involves scheduling but no routing decisions is the Berth
Allocation Problem, which involves scheduling ship arrival times at a single port, as
well as assigning ships to berths for loading and unloading. This problem is most
commonly considered in the context of container shipping, for example by Cordeau
et al. [2005]; Lee and Chen [2009]; Du et al. [2011]. However this has also been re-
searched in the context of bulk shipping, for example by Kao and Lee [1996]; Álvarez,
Longva, and Engebrethsen [2010].
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A typical objective for the Berth Allocation Problem is minimising the waiting
time for ships, as well as maximising the utilisation of berths, as well as other expen-
sive infrastructure. Kao and Lee [1996] investigated the Berth Allocation Problem
with the objective of minimising demurrage (fees paid to ship owners for tardiness)
by scheduling arrival times of ships at the port to minimise congestion and reduce
ship waiting times. They were able to increase the utilisation rate of berths and re-
duce the amount of time ships spend waiting for a berth to become available. Lee
and Chen [2009] considered a Berth Allocation Problem where the berths are contin-
uous rather than discrete segments. Cordeau et al. [2005] considered both discrete
and continuous berths, and incorporated quay crane allocation. Their objective was
minimising the service time for ships – the sum of the waiting time and the loading
time.

Du et al. [2011] and Álvarez, Longva, and Engebrethsen [2010] considered the
Berth Allocation Problem with an objective of minimising fuel costs, by considering
variable ship speed, scheduling ships to sail more slowly, and investigating alterna-
tive queueing rules from the traditional first-come first-served rule at ports. These
approaches maximised berth utilisation while also minimising fuel costs. Du et al.
[2011] also minimised emissions along with fuel usage.

2.3.2 Routing and Scheduling with Soft Time Windows

Ship routing and scheduling with soft time windows is a special case of the Vehi-
cle Routing Problem with Soft Time Windows (VRPSTW), though the constraints
involved in a maritime problem differ somewhat from the constraints involved in
vehicle routing.

In vehicle routing, time windows allow the modelling of real-world constraints on
delivery deadlines. However, hard time windows often result in tightly constrained
problems which require a larger fleet of vehicles in order to meet deadlines. The
VRPSTW specifies penalties for early and late arrival outside each customer’s pre-
ferred time window instead of hard time window constraints. Soft time windows
allow better utilisation of vehicles, thus reducing transportation costs, while still ser-
vicing most customers within their preferred time windows. However, soft time win-
dows result in a more complex objective function, making the problem significantly
more difficult to solve [Qureshi, Taniguchi, and Yamada, 2009].

Approaches to solving the VRPSTW differ in terms of the objectives being opti-
mised for at various stages of the calculation. Some approaches optimise first for the
number of vehicles (routes), then for minimal travel time and distance, then for min-
imal cost only as a final objective with time window penalties included. One such
approach was presented by Figliozzi [2010], who used an iterative route construc-
tion and improvement algorithm where the improvement step initially attempted to
merge routes with underutilised vehicles to reduce fleet size, and then attempted to
reduce the total route duration and time window penalties. This approach was fur-
ther extended by Figliozzi [2012] to take into account time-dependent travel times,
which result in much more complex constraints between tasks, but which allow the
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routing solutions to take into account time-varying speed limits, or travel times being
affected by peak hour traffic.

Other VRPSTW approaches optimise for a combined weighted objective that in-
cludes all of the above costs, such as the work of Qureshi, Taniguchi, and Yamada
[2009], who investigated an exact solution approach for the VRPSTW based on col-
umn generation, and compared results of different levels of time window relaxation
against solutions with hard time windows.

VRPSTW approaches also differ in the types of penalties modelled. For exam-
ple, Qureshi, Taniguchi, and Yamada [2009] only applied penalties for lateness, with
no penalties for arriving early, whereas other work such as that of Figliozzi [2010]
and Fan et al. [2011] includes penalties for both late and early arrival.

VRP problems also vary widely in the types of side constraints considered in
each problem. The soft time window constraints themselves are one example of
side constraints that are not considered by all VRP problems. Many problems also
consider other additional side constraints, such as the time-dependent travel times
investigated by Figliozzi [2012]. One of the most general approaches in recent years
was presented by Kilby and Verden [2011], who combined large neighbourhood
search [Shaw, 1997] with Constraint Programming to solve vehicle routing problems.
Their Indigo vehicle routing solver implements some constraints natively, for faster
calculation, but also integrates with a CP solver to allow flexible side constraints to
be added as required, such as a "blood bank" constraint requiring that deliveries
be made within 20 minutes of pickup. Indigo implements time window constraints
natively, and can consider soft time windows with linear early and late penalties.
The CP system uses backtracking search with Indigo acting as the variable/value
choice heuristic – if a variable/value assignment made by Indigo leads to a CP con-
straint being violated, this information gets propagated back to Indigo, to prevent
the Large Neighbourhood Search from making the same assignment in future. The
Large Neighbourhood Search destroys part of the solution in each iteration, and uses
insertion heuristics to repair the partial solution.

Ship routing and scheduling problems are very similar to the VRP; however, soft
time windows have rarely been considered in maritime transportation. Perhaps be-
cause of this, many approaches to ship routing and scheduling with soft time win-
dows compare the impact of different penalty functions on costs or other aspects
of the solution. This includes the work of Fagerholt [2001] and Fagerholt [2000],
who compared several penalty functions for deliveries outside the preferred window
which could be used for different situations, e.g. when a customer gets a fixed dis-
count for a delivery outside the preferred time, or when the discount depends on the
lateness of the delivery. They were able to achieve in a 15% reduction in shipping
costs by shipping 12% of cargo outside the preferred delivery times, showing that
relaxing time windows can produce substantial benefits at a small inconvenience to
customers. Another related approach was presented by Karlaftis and Kepaptsoglou
[2009], who investigated the effect of varying time window penalties on the aver-
age delay for a container ship routing problem, finding that a 5% penalty for delay
resulted in 3 times longer average delays compared to a 100% penalty for delay.
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An alternative penalty function was investigated by Halvorsen-Weare and Fager-
holt [2013], who considered a maritime inventory routing problem with a require-
ment that deliveries be evenly spread over the scheduling period. This constraint was
enforced by breaking the time range up into a set of cargoes each with an inner and
outer time window, where the inner time windows represent target delivery dates
that satisfy the "evenly spread" requirement. Penalties were applied for early and
late delivery outside the inner time window, and the outer time windows were con-
sidered hard constraints in the optimisation model, to enforce a maximum departure
from the target delivery date.

Another interesting time window penalty function was presented by Christiansen
and Fagerholt [2002], who investigated penalties for ships arriving at port close to
weekends, to avoid the risk of long delays caused by some ports closing on weekends.
This problem included multiple soft time windows – a situation rarely explored in
the literature, with the exception of a few vehicle routing problems. The penalty
function peaked before weekends, and dropped to 0 at the start of each week. The
objective function was a weighted sum of the transportation costs and the penalty
costs for "risky" arrival times.

Our work on introducing time-varying draft constraints into maritime transporta-
tion problems could also be considered as a problem with soft time windows, where
the penalty function is the opportunity cost of not being able to carry extra cargo
if the ship sails outside the time period around the high tide when it is able to sail
with maximum cargo. This penalty function is similar to that for a soft time window
with late and early arrival penalties; however, for any problem where the time range
covers multiple high tides, there will also be multiple soft time windows, one for
each high tide.

2.3.3 Ship Speed Optimisation

Rising fuel prices in recent years have led to increased interest in problems that
involve optimising shipping speeds to minimise fuel consumption [Christiansen et
al., 2007, 2013; Psaraftis and Kontovas, 2013]. Fuel costs can be on the order of
US$100,000 per day, and can form up to 75% of the operating costs for a large cargo
ship [Ronen, 2011]. Fuel consumption over time can be approximated as a cubic
function of ship speed [Ronen, 1982], thus optimising speeds to minimise shipping
costs can produce large reductions in both shipping costs and CO2 emissions.

Some of the earliest papers looking at bulk cargo ship routing and scheduling
with variable ship speeds include Ronen [1982], who analysed the trade-off between
savings in fuel cost caused by sailing slower against the increased costs caused by a
longer voyage duration. Brown, Graves, and Ronen [1987] and Bausch, Brown, and
Ronen [1998] considered ship schedule optimisation problems with variable ship
speeds and hard time windows for delivery of each cargo. In the research by Fager-
holt [2001] on ship routing and scheduling with soft time windows, the soft time
windows also allowed cost reduction via better allocation of routes or better optimi-
sation of sailing speeds, with a small inconvenience to customers.
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In liner shipping, Ronen [2011] looked at the effect of oil price on the trade-off
between reducing sailing speed and increasing fleet size for container ships, under
the assumption that ship speeds are constant for entire voyage rather than varying
per leg. Løfstedt et al. [2010] presented a set of benchmarks for liner shipping net-
work design problems, with fuel costs taken into account. Meng and Wang [2011]
optimised the service frequency, fleet deployment plan and sailing speeds for a liner
service route, including variable sailing speeds at different legs of the route. They
used a Mixed Integer Non-Linear Programming model, approximated by a MILP
model to give a lower bound. Branch-and-bound was then used to find a solution for
the MINLP within a given error tolerance. The Liner Shipping Fleet Repositioning
Problem [Tierney et al., 2012a], discussed in more detail in Section 2.3.4 also involves
decisions on the ship speed in each leg of the voyage. Notteboom and Vernimmen
[2009] presented an overview of how liner service operators have adapted their ser-
vice for high fuel prices in practice: reducing speed; adding new ships to maintain
service frequency; assigning the largest vessels to the longest routes with the largest
ratio of travel time to time spent in ports; and adapting the number of port calls on
each route based on a tradeoff of demand vs cost.

Other problems that consider variable ship speed include Brown et al. [2007],
who looked at varying ship engine modes to optimise the fuel consumption of a
single vessel. Du et al. [2011] considered the problem of berth allocation with speed
optimisation to reduce fuel usage and minimise congestion at ports. They found that
ships sometimes sail below the most efficient speeds in some circumstances, and that
costs could be improved by speeding up in those cases. The most efficient approach
to berth allocation was found to be one that spread out ship arrival times at the port
constantly over time, as this approach reduced congestion and minimised unused
resources.

Ship speed optimisation has also been considered in the context of policy changes
that can be put in place by governments and ports to encourage reduction of CO2
emissions. Corbett, Wang, and Winebrake [2009] investigated the effect on CO2 emis-
sions of increasing fuel prices by means of a fuel tax, assuming that shipping compa-
nies would use speed optimisation to minimise shipping costs. Linstad, Asbjørnslett,
and Strømman [2011] investigated the effect of speed reduction on CO2 emissions
and costs and compared the estimated effectiveness of several policy changes (fuel
tax, emissions trading and speed limits) aimed at reducing emissions. They found
that substantial CO2 reductions can be achieved, but the world fleet would need to
grow to reach full potential, due to more ships being required to meet transportation
demand when ships sail slower. Speed limits were found to be the most effective way
of reducing emissions, since shippers are willing to pay more for shorter transporta-
tion times, so an increase in fuel price would have to be very high to significantly
affect emissions.

Álvarez, Longva, and Engebrethsen [2010] investigated improvements to port
berthing policies and shipping contracts to reduce the incentive to sail fast. Many
ports have first-come-first-served berthing policies, which contributes to port con-
gestion thus introducing safety risks, and also encourages ships to sail at full speed
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rather than reducing costs and emissions by sailing slower. Álvarez, Longva, and En-
gebrethsen [2010] compared FCFS against two new berthing policies, and found that
both alternative policies resulted in significant improvements in shipping costs and
port congestion. Improving port berthing policies to reduce congestion and shipping
costs has been trialled in practice – the port of Newcastle has recently introduced a
"virtual arrival" system to reduce fuel costs and CO2 emissions, as well as improve
ship queueing times [Corbett, 2009; Newcastle Port Corporation, 2010].

Returning to speed optimisation in the context of bulk cargo routing and schedul-
ing, the two papers involving ship speed optimisation that are most closely related
to the work presented in this thesis are Fagerholt, Laporte, and Norstad [2010]
and Norstad, Fagerholt, and Laporte [2011]. Fagerholt, Laporte, and Norstad [2010]
optimised the ship speed on each leg of a fixed liner shipping route, with time win-
dows for arrival at each waypoint. Norstad, Fagerholt, and Laporte [2011] investi-
gated a ship routing and scheduling problem with speed optimisation on each leg
of each route. The approach of Fagerholt, Laporte, and Norstad [2010] was used
to determine the profit contribution of each candidate route by optimising speeds
for a single ship on each candidate route. The routing and scheduling problem was
solved by generating a number of initial solutions and using a multi-start local search
heuristic to improve the best solutions. Chapter 6 discusses both of these methods in
more detail, and extends them to consider time-varying restrictions on ship draft at
each waypoint.

Other approaches to bulk cargo routing and scheduling with ship speed opti-
misation consider slightly different cost functions and side constraints. One similar
approach to Fagerholt, Laporte, and Norstad [2010] was investigated by Gatica and
Miranda [2011], whose network-based modeling approach to the bulk cargo ship
routing and scheduling problem also used discretisation of the time windows for
pickup and delivery of cargoes in order to consider variable ship speeds. While
their approach only considered fuel costs and fixed port charges, the network-based
model can be easily extended to include soft time windows and port costs that vary
with arrival time. The optimal navigation speed for each feasible arc between dis-
cretised pickup and delivery times was calculated by an external model, and the
results estimated a potential cost reduction of around 21% on average compared to a
fixed-speed continuous model.

Most earlier work on ship speed optimisation, including Fagerholt, Laporte, and
Norstad [2010], Norstad, Fagerholt, and Laporte [2011] and Gatica and Miranda
[2011], ignored costs that were not affected by speed, such as the charter freight
rate of ships. One exception is the work of Psaraftis [2012], who presented a ship
pickup-and-delivery problem with variable speeds which considered both the fuel
cost and the charter freight rate of ships. Considering these costs together results in
a more realistic model that matches the observed behaviour of shipping companies in
response to changes in fuel cost and freight rate. As demand for shipping grows and
freight rate increases, ships sail faster; on the other hand, during economic down-
turns, when the demand for shipping and the freight rates are both lower, ships
sail slowly to minimise fuel consumption. Freight rate is paid per day, so travelling
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Figure 2.5: An example repositioning scenario with two vessels (solid and dashed
black lines) reposition from their initial services to the goal service.

slower reduces fuel cost, but increases the freight rate. Psaraftis [2012] also consid-
ered a "delay cost" of the cargo – the cost of storage of the cargo prior to pickup, as
well as the opportunity cost of lost revenue due to delayed delivery.

Finally, Vilhelmsen, Lusby, and Larsen [2013] considered a bulk cargo ship rout-
ing and scheduling problem with decisions on refuelling locations and amounts, to
take into account variability in the price of fuel between times and locations, as well
as limitations on the combined quantity of fuel and cargo that can be loaded onto
a ship simultaneously. The results showed a small increase in profit – around 0.5%
– by considering these additional variables in the routing decisions; however, in an
industry with such huge numbers as bulk shipping, even a small increase in profit
can still be significant.

It is clear that ship speed optimisation decisions affect many different aspects of
shipping cost. Our work on bulk cargo routing and scheduling with speed optimi-
sation and time-varying draft restrictions considers both the fuel cost and charter
freight rate, similarly to Psaraftis [2012]; however, we also consider the cost impact of
ship draft, as well as the impact of time-varying draft restrictions on allowable sail-
ing times at waypoints and the effect this has on waiting times. Our approach builds
on the algorithms presented by Fagerholt, Laporte, and Norstad [2010] and Norstad,
Fagerholt, and Laporte [2011], which are described in more detail in Chapter 6.

For a more detailed review and taxonomy of maritime transportation problems
involving variable speed, see Psaraftis and Kontovas [2013].

2.3.4 The Liner Shipping Fleet Repositioning Problem

The Liner Shipping Fleet Repositioning Problem (LSFRP) [Tierney et al., 2012a] is
one example of a problem in container shipping that involves decisions on the speed
of each ship on each leg of the voyage. It is also similar to problems with time-
varying draft restrictions in that the action costs vary with time. We discuss it in
more detail in this thesis, since it is investigated further in Chapter 7 to test how
well the techniques investigated in this thesis can be generalised to other maritime
shipping problems.

Liner shipping networks must be regularly updated in order to adjust them to
seasonal demands and shifts in the world economy. In order to do this, shipping
lines reposition ships between services in the network. A service is a cyclical route
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Figure 2.6: A subset of a real-world repositioning scenario, from Tierney et al. [2012a].

consisting of a sequence of ports with fixed visitation times. Services can be thought
of like bus routes, in that each port is visited on a regular (i.e., periodic) frequency.
Many shipping lines set this frequency to be one or two weeks, meaning each port on
a service is visited by a vessel every week or every other week. This regularity allows
liner shippers, who are the customers of shipping lines, to more easily integrate cargo
shipments into their international supply chains.

Given a set of vessels and a goal service, where each vessel is assigned an initial
service, the aim of the LSFRP is to reposition each vessel to the goal service within a
given time period at minimal cost. Figure 2.5 shows an example repositioning at an
abstract level. Two vessels (black lines) are repositioned to their goal service (blue,
left).

A vessel begins repositioning when it phases out from its original service, and
ends repositioning when it phases in to its new service. The total cost of the reposi-
tioning depends on the fuel usage from sailing the vessel between ports, and a fixed
hourly cost, called the hotel cost, that is paid for the time between the phase-out and
phase-in. The cost function for a sailing action decreases as the duration of a sail-
ing increases because less fuel is needed to sail at slow speeds than at fast speeds.
We use a linear approximation of vessel fuel consumption in this work. The cost of
sailing also depends on whether the vessel sails empty or carries empty containers.
Carrying empty containers is called a sail-equipment (SE) opportunity. Another op-
tion for repositioning vessels is to replace another vessel in a regular service, which
is called a sail-on-service (SoS) opportunity. SoS opportunities significantly reduce the
cost of a repositioning, but may increase sailing duration, due to the delay in load-
ing and unloading cargo. The times at which these sailings may be performed may
also be limited. Our model also includes cabotage restrictions, which prevent ships
from violating laws in certain countries that protect domestic shipping routes from
international competition. The LSFRP is not a pure scheduling problem, as there is a
choice of actions and action durations.

Figure 2.6 shows a subset of a repositioning scenario in which the new Intra-
WCSA service requires three vessels that must be repositioned from their services in
South-East Asia. One of the vessels was originally on the CHX service, and the other
two were on other services not shown in this figure. The cost of repositioning in this
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scenario can be reduced by carrying equipment from China to South America (e.g.
DLC to BLB), or using the AC3 service as an SoS opportunity.

2.3.5 Draft Restrictions in Maritime Transportation Problems

The majority of ship routing and scheduling algorithms either ignore draft entirely,
or mention draft restrictions only in passing as one of the possible reasons for a ship
being incompatible with some ports. Some papers specifically list draft restrictions as
one of the issues that are left to human schedulers to consider, for example Fagerholt
[2004].

The few maritime scheduling papers that do consider draft restrictions at ports
usually only model them as constant limits that do not vary with time, for example,
assuming that a given port will always allow ships with a draft of 13 metres or less,
and never allow ships with deeper drafts to enter. Examples of papers with constant
draft limits include Christiansen et al. [2011]; Korsvik, Fagerholt, and Laporte [2010];
Bausch, Brown, and Ronen [1998]; Fisher and Rosenwein [1989]; Brown, Graves, and
Ronen [1987].

Berth allocation problems such as Cordeau et al. [2005]; Lee and Chen [2009] also
sometimes consider draft, since draft restrictions may limit which ports are compat-
ible with which berths. However, these approaches have only considered draft as a
static constant limit. In the context of a berth allocation problem, this is a reasonable
simplification, since the main factor affecting berth draft limits is the water depth at
low tide, rather than the depth of water at a range of times.

Another interesting problem involving draft restrictions was introduced by Rakke
et al. [2012], who investigated a Travelling Salesman Problem involving a ship deliv-
ering cargo to a set of ports, each of which has an associated draft limit. The draft
of the ship depends on the amount of cargo loaded, so the ports must be visited in
an order that conforms to the draft limits. Again, only constant draft limits were
considered, but in this problem, ships can enter and leave each port close to high
tide, so extending this problem to model the draft restrictions as varying over time
may allow lower-cost tours to be found in future.

To the author’s knowledge, the only existing ship routing and scheduling ap-
proach which has considered time variation in draft restrictions is Song and Furman
[2010]. This problem includes draft limits at ports that vary with the seasons, with
one constant draft being modelled per day. Variation between high and low tide
is not yet included, but the model could be extended to consider tidal variation by
increasing the time resolution from one-day time slots to a fine resolution that could
capture the tidal variation in draft restrictions. This would increase the size of the
problem, making it harder to solve, but may result in schedules that allow ships to
load more cargo. Song and Furman [2010] don’t compare their model against one
which approximates the time-varying draft restrictions with a constant limit, but this
would also be interesting to investigate, to see how much time-varying draft restric-
tions improve the solutions.
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2.3.6 Summary

Table 2.1 summarises the bulk cargo ship routing and scheduling problems presented
in this chapter, including both problems in cargo routing and maritime inventory routing
(MIR).

Time windows for each problem are specified as either hard or soft, with multiple
time windows and quantity-dependent time windows also indicated. All MIR prob-
lems have inventory-dependent implicit time windows; however, Halvorsen-Weare
and Fagerholt [2013] also consider soft time windows with penalties.

This table also lists whether each paper considers optional cargoes (ie. cargoes
that can be transported by a spot charter, or optional extra cargoes that can be carried
in the event of excess capacity in the fleet), as well as flexible cargo amounts and mul-
tiple cargoes per ship. Variable ship speed is considered in some papers, with Fager-
holt [2001] using post-processing to select ship speeds, and Vilhelmsen, Lusby, and
Larsen [2013] assuming that all ships sail at load-dependent optimal speeds. All pa-
pers that consider draft restrictions are also indicated, as either constant, manual, or
time-dependent.

Table 2.2 summarises all the other problems discussed in this chapter, including
the Liner Shipping Fleet Repositioning Problem (LSFRP); the Travelling Salesman
Problem (TSP) with draft limits investigated by Rakke et al. [2012]; ship speed opti-
misation problems for ships travelling along one route, some of which also consider
the problem of determining the optimal fleet size for that route, as extra ships may
be required to maintain the desired frequency of service with slower ship speeds.
This table also lists berth allocation problems and vehicle routing problems with soft
time windows (VRPSTW).

For each problem type, this table lists whether the problem deals with container
or bulk cargo (except for the VRPSTW); whether the problem involves routing de-
cisions; whether there are no time windows, or whether they are hard, soft (with
penalties at edges), or there is only a requirement for service frequency. For prob-
lems that involve any decisions on the routing of cargoes, we also specify whether the
cargo amounts are flexible, and whether ships/vehicles can carry multiple cargoes
simultaneously. The table lists whether each problem considers draft restrictions and
variable ship speed – Kao and Lee [1996] consider variable ship speeds implicitly by
varying ship arrival times, though speed is not explicitly considered as a decision
variable, and fuel costs are not considered. We also specify whether the problem
involves optimisation at one port, or multiple ports.

Several problems consider draft restrictions, but the impact of time-varying draft
restrictions on scheduling has not yet been investigated. The most basic requirement
for ship routing and scheduling is that schedules must satisfy safety rules on max-
imum sailing draft at every port. However, since many ports around the world are
both tidal and draft-restricted, scheduling approaches that use overly simple approx-
imations to draft constraints may miss the opportunity to load a ship to a deeper draft
at high tide, or when waves are low, leading to suboptimal schedules. Since many
ports around the world are draft-restricted, there may be many problems where con-
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sideration of draft restrictions would improve cargo throughput and reduce shipping
costs.

The next chapter begins the main contribution of this thesis by introducing a novel
problem in maritime transportation – maximising cargo throughput at a bulk export
port with time-varying draft restrictions. Later chapters of the thesis investigate a
number of approaches to the bulk port cargo throughput optimisation problem, as
well as introduce time-varying draft restrictions into a cargo routing problem with
ship speed optimisation, optional cargoes, split loads and flexible cargo sizes. The
final chapter looks beyond these two problems to other problems in related fields
which have time-varying action costs, and considers the possibility of generalising
approaches between these problem types.
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Chapter 3

Optimising Cargo Throughput at a
Bulk Export Port

3.1 Introduction

This chapter introduces the problem of optimising cargo throughput for a bulk ex-
port port with time-varying draft restrictions. This begins the main contribution
of the thesis: extending maritime transportation problems to be able to deal with
time-varying draft restrictions, and investigating the impact of time-varying draft
restrictions on schedule quality.

The problem arises from a real-world situation at Port Hedland in Western Aus-
tralia – the world’s largest bulk export port, exporting 238 million tonnes of iron ore
in the 2011-12 financial year [Port Hedland Port Authority, 2012]. Port Hedland is
draft-restricted, with a very high tidal variation – there can be up to 6 metres dif-
ference between high and low tide. The biggest high tides may allow Capesize bulk
carriers to sail with up to 18.5m draft, whereas at low tide, only very small or empty
(inbound) ships are able to sail.

Maximising cargo throughput is an important problem for ports exporting major
bulk cargoes such as iron ore and coal. There is typically more cargo available for
shipping than can be loaded onto the set of ships currently at the port, so if the
schedule of ship sailing times can be optimised to increase capacity on a ship, this
extra capacity can be used to carry extra cargo. This reduces future shipping costs,
since that cargo will not need to be transported on a later ship.

3.1.1 How Ship Sailing Times are Scheduled in Practice

In practice, scheduling ship sailing times and drafts at an individual port is done
manually at present, or using simple tools such as Microsoft Excel. Until recently,
most ports used simple rules to calculate when ships can sail and how much cargo
they can carry. These rules have the benefit of being easy to calculate, and easier to
use for scheduling, since the draft limits for each ship do not change as the time of
sailing approaches. However, such rules are quite conservative, as they must make
allowances for uncertainty in environmental conditions.

37
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In recent years, some ports have begun to use computerised systems that use
live measurements and forecasts for tides, currents and waves to calculate under-
keel clearance – and therefore allowable sailing draft – more precisely. These more
accurate calculations of under-keel clearance allow more cargo to be loaded safely
in good weather conditions, as well as improving safety in poor weather conditions,
compared to simpler static rules that don’t take live environmental conditions into
account.

Ports that switch from a static under-keel clearance rule to using the DUKC R©

software report being able to ship millions of tonnes more cargo each year due to
more accurate predictions of under-keel clearance, resulting in less allowance for
uncertainty being required. This can translate to hundreds of millions of dollars
in increased revenue per year for shippers [OMC International, 2013]. However,
this makes the problem of scheduling ship sailing times at the port more complex,
since the allowable sailing times vary for each ship, and may be updated as real-
time environmental conditions and forecasts change. This software is currently used
by 22 ports worldwide, which makes it the most widely used under-keel clearance
calculation software in the world [OMC International, 2013], and the number of ports
using such automated software is likely to continue to increase in future.

Port Hedland uses the DUKC R© to calculate allowable sailing drafts, which has
allowed over 1 million tonnes more cargo to be shipped from the port per year [Port
Hedland Port Authority, 2013b]. Port Hedland is also rapidly growing in export
capacity, and the large numbers of ships sailing on each tide, together with the com-
plexity of having a different range of allowable sailing times for each ship, make
the problem of scheduling ship sailing times on each tide too complex for human
schedulers to solve optimally. This makes an automated system for scheduling ship
sailing times and drafts particularly valuable for Port Hedland.

3.1.2 The Bulk Port Cargo Throughput Optimisation Problem

We define the Bulk Port Cargo Throughput Optimisation Problem (BPCTOP) as the
problem of choosing sailing times and drafts for a set of ships arriving at or departing
from a single port so as to maximise the total cargo carried on the departing ships,
while also meeting all safety rules in place at the port. The draft and cargo load
of arriving ships is fixed, though extensions of this problem could consider routing
between multiple ports, with the load of each ship being selected at the origin port
so as to maximise cargo while meeting draft restrictions at the destination port. For
an export port such as Port Hedland, almost all arriving ships are empty, so the draft
and amount of cargo is only relevant for departing ships.

The problem involves a choice of objective functions. This thesis generally con-
siders a simple objective function that maximises the total cargo carried on all ships.
However, an alternative variation not investigated in depth in this thesis is a more
complex objective function with multiple weighted objectives, including priority
weightings between ships to take into account any queueing rules in effect at the
port, and allowing shipping agents to set target drafts for each ship if the ship is
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contracted to carry a certain minimum amount of cargo.
The allowable sailing times for a ship arriving or departing a port depend on the

draft and other dimensions of the ship, the times when other ships are scheduled to
sail, and a complex set of factors affecting the under-keel clearance (amount of water
under the ship’s keel). Factors affecting under-keel clearance have been discussed in
detail in Chapter 2; however, for the rest of this thesis, we simplify these calculations
down to a function that specifies the maximum allowable sailing draft for each ship
at a range of discretised times.

The major constraints involved in this problem are as follows:

• Ports may have safety restrictions on minimum separation times between
ships, as ships sailing too close together in a narrow channel may pose a safety
risk. Minimum separation times between ships may also depend on which
berths the ships sail from, and the order in which they sail. If a ship departing
from a berth at the back of the port sails first, a second ship sailing from a
berth close to the channel exit will have to wait for it to pass. If the ships sail
in the opposite order, however, they may be far enough apart at their starting
locations to be able to start sailing simultaneously.

• The problem also needs to include constraints on the earliest sailing time for
each ship, which for an outgoing ship would depend on the projected time
when the ship will be fully loaded, refuelled, with all crew and supplies on
board, and ready to set sail. For an incoming ship, the earliest sailing time
would be the time by which the ship will arrive at the port and be ready to start
sailing through the channel towards the berth. If both incoming and outgoing
ships are included in the scheduling model, incoming ships would also have
restrictions on their sailing times to ensure that any outgoing ship departing
from the same berth has cleared the berth before the incoming ship arrives.

• Some ports may also have resource constraints on the availability of tugs –
small boats used to assist large ships in entering and leaving a port. At Port
Hedland, tugs are required to assist every ship over a given size, which in-
cludes all draft-restricted ships. When there are many ships sailing on a single
tide, the number of tugs available may form a bottleneck in the ship scheduling
problem, so tug constraints need to be included in the model. Tug constraints
are complex and depend on the order in which ships sail, the origins and des-
tinations of successive ships, and the safety rules in place at the port specifying
the number of tugs required for each type of ship, as detailed in the Port User
Guidelines and Procedures [Port Hedland Port Authority, 2013c]. Different
approaches to modelling tug constraints are investigated in Section 3.3.

At tidal ports such as Port Hedland, ship sailing times are scheduled by first as-
signing ships to high tides, then choosing sailing times for the set of ships assigned
to each high tide. This thesis uses a similar approach – the Bulk Port Cargo Through-
put Optimisation Problem presented in this chapter optimises sailing times for a set
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Figure 3.1: Port Hedland Layout

of ships scheduled to sail on one high tide, since this allows us to easily compare our
results against real schedules for the same high tides produced by human schedulers
in Chapter 5. The planning horizon is thus the time range around one high tide
– approximately 12 hours for a port with semi-diurnal tides such as Port Hedland,
which has two high tides per day. Note that some ports have diurnal tides – one high
tide per day – so the planning horizon would need to be around 24 hours.

For the problem of scheduling ship sailing times at a single port, the model pre-
sented in this chapter can easily consider a larger planning horizon by simply ex-
tending the number of time steps considered in the problem. However, the models
presented here assume that there is at most one ship arriving at and departing from
each berth, since the single-tide planning horizon is too short to allow enough time
for a ship to arrive, load, and depart again. A problem with a larger planning horizon
may need to extend these models to consider ships arriving, loading and departing
again. One approach to dealing with this problem could be implemented by first
assigning a tide to each ship arrival and departure, then optimising ship schedules
independently for each high tide, then attempting to move ships to an adjacent tide
to see if that improves the schedule. This thesis presents a much larger ship routing
and scheduling problem with multiple ports in Chapter 6.

3.1.3 BPCTOP Example

Figure 3.1 shows the layout of Port Hedland. The grey areas are land, white areas
are water, and black lines represent locations of berths. The port has a single channel
leading northwards out to sea, with berths on either side of the channel, as well as a
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Figure 3.2: Example Bulk Port Cargo Throughput Optimisation Problem

turning basin at the south end of the port that is used by incoming ships to ensure
that all berthed ships face out to sea for faster departure. The shallowest point along
the channel is at Hunt Point, the exit from the inner harbour, so large ships need to
start sailing ahead of the high tide so as to pass Hunt Point at the peak of the high
tide when there is the maximum amount of water available.

Figure 3.2 shows an illustrated example of a ship schedule for a single high tide
at Port Hedland. There are initially two ships at berth ready to sail, and two empty
incoming ships waiting at sea. Ship 1 is scheduled to arrive at the same berth that
ship 2 is departing from; ship 4 is scheduled to arrive at a currently empty berth.

The optimal schedule for these ships has the two outgoing (loaded) ships sailing
so as to pass Hunt Point around the peak of the high tide, thus maximising the
amount of cargo they can carry, with the empty incoming ships scheduled around
them.

In Figure 3.2(a), ship 1 sails through the channel and arrives at the turning basin,
clearing the channel for ship 2 to sail. In Figure 3.2(b), ship 2 leaves the berth,
allowing ship 1 to dock. Ship 3 must wait for ship 2 to pass before it can start sailing.
In Figure 3.2(c), ship 2 sails through the channel and out to sea. Ship 3 can start
sailing as soon as there is sufficient time between them to meet port safety rules. In
Figure 3.2(d) ship 4 can finally sail in to port after ships 2 and 3 have both cleared
the channel.

Note that this example is quite simple with only 4 ships. The record at Port
Hedland is 6 outgoing draft-restricted ships sailing on a single tide [Port Hedland
Port Authority, 2013d], together with several incoming ships, which results in a much
more complex problem.

3.1.4 Problem Features and Challenges

There are several key features of the Bulk Port Cargo Throughput Optimisation Prob-
lem (BPCTOP) which cause the problem to be computationally difficult. These are
discussed below, including how they affect the problem formulation and the types
of approaches used to solve the problem. Some of these issues would also apply to
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other ship scheduling and routing problems that involve time-varying draft restric-
tions, so in order to solve larger maritime transportation problems with time-varying
draft, we may need to decompose them into simpler subproblems.

Optimality
At a draft-constrained port, such as Port Hedland in Western Australia, even a

single centimetre of extra draft can allow 130 extra tonnes of cargo to be carried on
an average-sized bulk carrier [Port Hedland Port Authority, 2011b]. Port Hedland is
a large bulk export port, with around 1300 bulk carriers departing from the port in
a year [Port Hedland Port Authority, 2011a], so even a 1 centimetre improvement in
the average draft of ships sailing from the port would result in around 170,000 tonnes
of extra cargo being shipped without the need to charter additional ships. Due to
the huge scales involved, even a 1% reduction in schedule quality is undesirable. For
this reason, all the solution approaches we consider in this chapter aim to find the
optimal solution for our throughput optimisation problem. The problem is under-
subscribed in general, as there is more than enough time for all ships to sail, but it is
oversubscribed at the peak of the high tide, since all ships prefer to sail at the time
when they can carry the most cargo. Attempting to solve the problem to optimality
makes this problem much more computationally difficult.

Time-Indexed Formulation
The draft function for each ship depends on a variety of environmental conditions,

including tide, wave and current speed, so the resulting safe sailing draft may vary
even in as short a time as five minutes. This function is very complex and varies
for each high tide, so it cannot be specified by any simple equation. Taking time-
varying draft restrictions into account therefore requires the draft to be modelled as
a time-indexed function with a very fine time resolution.

In this thesis, five-minute time increments are used to allow us to model the
draft with sufficient accuracy. There are two main reasons for choosing this time
resolution:

1. When the tide varies by 6 metres over 6 hours, which can happen at Port Hed-
land, the allowable draft will vary by 8cm or more in some 5-minute intervals,
so making the time resolution coarser than 5 minutes would significantly re-
duce the quality of our schedules.

2. A finer time resolution would not provide any additional value, as it’s imprac-
tical to expect large ships to sail exactly at a given minute. Scheduled sailing
times for ships at Port Hedland are typically rounded to the nearest five min-
utes.

The high time resolution of the model means that even though the number of
variables is small, the domain size of each variable is large, which results in a longer
calculation time. Continuous-time formulations for this problem have not yet been
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investigated, but they are a possible avenue for future work. Modelling the time
as a continuous variable is difficult, since the function is too complex to be speci-
fied by any simple equation, and would need to be adjusted for each high tide. A
continuous time function is thus only possible by creating a partially-linear approxi-
mation for each high tide, based on the value of the draft at five-minute increments.
Investigation of this approach is left for future work.

Sequence-Dependent Setup Times
Ports with draft restrictions usually have a channel which is used to access the

berths. Port channels are often narrow and can only be transited by ships one at a
time. This results in ports having safety restrictions on the minimum separation time
required for ships transiting through the channel, to ensure that ships do not travel
too close together, and to avoid the risk of ships colliding or not having enough room
to manoeuvre. Since berths are positioned at different locations along the channel,
the separation time between a pair of ships depends on the order in which ships
sail. The sequence-dependent constraints do not propagate well, which makes it
hard to find optimal solutions. This effect is exacerbated by the even more complex
and highly sequence-dependent constraints on the availability of tugs, which will be
discussed in Section 3.3.

3.2 Constraint Programming Model

3.2.1 Variables and Parameters

This section presents a Constraint Programming model for the BPCTOP.

Parameters
Let V be the set of vessels to be scheduled. Let [1, Tmax] be the range of discretised

time indices. Each vessel v has an earliest departure time E(v), which specifies the
earliest possible time when vessel v may start sailing.

D(v, t) defines the maximum allowable sailing draft for the vessel v if it starts to
sail at time slot t, accounting for all safety rules at this port, including the effects of
tide, waves, squat, etc. A ship may take several hours to transit through the channel,
so the value of D(v, t) is calculated based on the minimum under-keel clearance the
ship will encounter at any point along the channel if it starts to sail at time t. The
maximum draft for each ship may also be limited by the maximum capacity of the
ship, which is incorporated into the value of the D(v, t) parameter. At some ports, the
total amount of cargo available for transport may be less than the maximum capacity
of all available ships, in which case the amount of cargo would also constrain the
maximum drafts; however, at Port Hedland, there is generally always more iron
ore available for shipping. The model presented in this chapter does not include
a constraint on maximum cargo available, however this could easily be added if
required for other ports.
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ST(vi, vj) specifies the minimum separation time between the sailing times of
every ordered pair of ships vi, vj ∈ V, as required by safety rules at the port, to
prevent ships sailing so close together that they would run the risk of collision, or
not have enough room to manouevre.

Let B be the set of pairs of incoming and outgoing ships sharing the same berth.
For each such pair b ∈ B, let Bi(b) be the incoming ship and Bo(b) the outgoing
ship. For every such pair of ships, d(b) is the minimum delay between their sailing
times, which allows enough time for the outgoing ship Bo(b) to leave the berth safely
prior to the arrival of the inbound ship Bi(b). This model assumes that berths for
each ship have already been assigned. This is a reasonable assumption, since berth
assignment is considered on a time scale of days, whereas scheduling of precise ship
sailing times is considered on a time scale of minutes, so these are generally modeled
as two separate problems by schedulers at ports. By the time a ship’s exact sailing
time on the high tide is being scheduled, it already has a designated berth. However,
dynamic allocation of berths could be a potential future extension to this problem.

Each ship v ∈ V – incoming or outgoing – has an associated berth. For each pair
of ships there is a minimum separation ST(vi, vj) between their sailing slots, which
depends on their associated berths. If vi is an incoming ship whose berth is the same
as that of outgoing ship vo, in addition to their minimum separation, vi can only be
scheduled after vo. If vo is not included in the schedule, then nor can vi be, since
the berth that vi is sailing to would still be in use by the previous ship, vo. Note
that the separation time is used to enforce a safe distance between successive ships
in the channel, whereas the minimum delay between two ships using the same berth
is used to ensure that the outgoing ship has enough time to clear the berth before the
incoming ship arrives.

Decision variables
s(v) ∈ [0, 1] is a binary variable which specifies whether the ship v is included in

the schedule, since it is possible that some ships cannot be scheduled at all, if, for
example, a scheduler tries to schedule too many ships on one tide.

T(v) ∈ [1, Tmax] defines the time slot at which vessel v is scheduled to sail.

Objective Function Parameters
Some additional parameters are used to describe complex port-specific objective

functions.
Let C(v) be the tonnage per centimetre of draft for the vessel v. The relationship

between tonnage and draft depends on the shape of the ship; however, loaded bulk
carriers generally have close to vertical sides above the waterline, so a linear function
is a good approximation for the relationship between tonnage and draft for the range
of drafts that would be considered for bulk carriers in a cargo throughput optimisa-
tion problem. Note that the minimum draft considered for a ship would be above
the draft for an empty ship, since only a draft range that is reasonable to sail with is
considered.
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Let MD(v) be the minimum target draft requested by the shipping agent for the
vessel v – if a target draft was specified in the shipping contract, there may be a large
financial penalty for sailing with less draft. Any additional cargo carried above the
target draft would be a bonus, but the financial incentive to carry extra cargo may
not be as high as that for reaching the target draft.

Let R(v) be a dependent binary variable which is 1 iff the scheduled draft D(v, T(v))
for vessel v is greater than or equal to the minimum target draft MD(v) requested
by the shipping agent for that vessel. R(v) is specified by Equation (3.1):

D(v, T(v)) ≥ MD(v)↔ R(v) = 1 (3.1)

P(v) represents the priority for the vessel v getting its minimum target draft
MD(v) in the schedule, for a port where priorities are allocated based on ship queue-
ing rules.

Let W define the weighting in a two-objective function given to the primary ob-
jective over the secondary objective.

Note that P(v) specifies the weighting between ships in the objective function,
whereas W specifies the weighting between objectives. Also, P(v) may change in
response to changing priorities, eg. if a ship gets delayed due to an equipment
breakdown and has to move to the next tide, its priority P(v) may be adjusted in the
calculation for the next tide’s schedule.

Summary
The following table summarises the parameters and variables used in the CP model

so far for easy reference.

Parameters
V Set of vessels.
[1, Tmax] Range of discretised time indices.
E(v) Earliest departure time for vessel v ∈ V.
D(v, t) Maximum allowable draft for vessel v ∈ V starting to sail at

time t.
ST(vi, vj) Minimum separation time between vessels vi, vj ∈ V.
B Set of pairs of incoming and outgoing ships using the same

berth.
Bi(b), Bo(b) Incoming and outgoing ships in pair b ∈ B.
d(b) Minimum delay between the sailing times of vessels Bi(b), Bo(b)

for b ∈ B.
Objective Function Parameters

C(v) Tonnage per centimetre of draft for vessel v ∈ V.
MD(v) Minimum target draft requested for vessel v ∈ V.
R(v) Specifies whether vessel v ∈ V is scheduled to sail with its tar-

get draft MD(v).
P(v) Priority for vessel v ∈ V getting its target draft MD(v).
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W Weighting of the primary objective in a 2-objective function.
Variables

s(v) Binary variable specifying whether vessel v ∈ V is included in
the schedule.

T(v) ∈ [1, Tmax] Variable specifying the scheduled sailing time for vessel v ∈ V.

3.2.2 Constraints

Earliest Departure Time Constraint

s(v) = 1⇒ T(v) ≥ E(v), ∀ v ∈ V (3.2)

Specifies the earliest departure time for each vessel. Any vessel v that is included
in the schedule (s(v) = 1) must be scheduled to sail no earlier than its earliest possi-
ble departure time E(v).

Berth Availability Constraint

s(Bi(b)) = 1⇒ (3.3)

s(Bo(b)) = 1∧ T(Bo(b)) ≤ T(Bi(b))− d(b),

∀ b ∈ B

Ensures that the berths for any incoming ships are empty before the ship arrives.
For every pair of incoming and outgoing ships Bi(b) and Bo(b) that share the same
berth as their destination and origin, if the incoming ship is included in the schedule,
then the outgoing ship must also be included in the schedule, and the scheduled sail-
ing time T(Bi(b)) of the incoming ship must be later than the sailing time T(Bo(b)) of
the outgoing ship by a delay of at least d(b), which gives the outgoing ship enough
time to clear the berth.

Separation Time Constraints

s(vi) = 1 ∧ s(vj) = 1⇒ (3.4)

T(vj)− T(vi) ≥ ST(vi, vj)∨
T(vi)− T(vj) ≥ ST(vj, vi),

∀ vi, vj ∈ V

Ensures that there is sufficient separation time between successive ships to meet
port safety requirements. For each pair of ships vi, vj either vi sails first, followed by
vj with a minimum separation time ST(vi, vj) between their scheduled sailing times,
or vj sails first, followed by vi with a minimum separation time ST(vj, vi) between
them. The minimum separation time ST may be different depending on the order in
which the ships sail, ie. ST(vi, vj) may be different from ST(vj, vi).



§3.3 Modelling Tugs 47

3.2.3 Objective Function

The objective function for the Bulk Port Cargo Throughput Optimisation Problem
may vary at different ports. Some ports may have an objective function that purely
optimises throughput; other ports may need to prioritise fairness to competing clients
above optimising the total throughput for the port. Two examples of objective func-
tions are shown below.

Equation (3.5) shows an objective function that maximises the total cargo through-
put at the port by maximising the sum of the drafts D(v, T(v)) at the scheduled
sailing time T(v) for each vessel v, weighted by the tonnage per centimetre of draft
C(v) for each ship, since the amount of extra cargo allowed by an increase in draft
varies depending on the size and shape of the ship. The objective function is also
weighted by the binary variable s(v) that specifies whether the ship was included in
the schedule.

maximise ∑
v∈V

s(v) · C(v) · D(v, T(v)) (3.5)

Equation (3.6) shows an alternative objective function, for a port with more com-
plex operating procedures, which allows shipping agents to request minimum target
drafts for each ship. R(v) is a binary variable which specifies whether the vessel v
was scheduled to sail with a draft D(v, T(v)) that was greater than or equal to the
minimum target draft MD(v) requested by the shipping agent for that vessel.

maximise ∑
v∈V

s(v) · W · P(v) · R(v)+ (3.6)

∑
v∈V

s(v) · C(v) · D(v, T(v))

Ships are allocated sailing slots based on priority P(v), which is determined by the
port’s ship queueing rules. An in-depth discussion of queueing rules at ports is be-
yond the scope of this thesis; however, these have been discussed briefly in Chapter 2,
and investigated in depth by Tengku-Adnan, Sier, and Ibrahim [2009] among others.

Finally, the parameter W defines the weighting given to the primary objective of
ships getting their minimum target draft MD(v), compared to the secondary objec-
tive of maximising the total cargo carried, C(v) · D(v, T(v)).

The rest of this thesis considers problems with the simple objective function de-
fined by Equation (3.5), as this is a fairly general function that would be applicable
at many ports. In practice, we’ve found that using the more complex multi-objective
function given by Equation 3.6 actually makes it easier to find optimal solutions, as
the large contribution of the requested draft objective makes it easier to narrow down
the search to good solutions quickly.

3.3 Modelling Tugs

The above CP model was included in a prototype application for scheduling ship
sailing times at Port Hedland, which is described in more detail in Chapter 5. One
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piece of user feedback from initial testing of this prototype was that the availability
of tugs sometimes constrained the schedule. Tug constraints were not included in
the original prototype; however, a model that did not include tug constraints could
produce unrealistic schedules.

Many ports require tugs to be used to guide large cargo ships in and out of
the port, to improve ship manoeuverability and therefore increase safety. Tugs are
attached to outgoing ships at berth, and detach from the ship some time after the
ship clears the most narrow, dangerous part of the channel. Tugs attach to incoming
ships while the ship is at sea, and detach from the ship as it arrives at the berth. At
some ports, tugs may also be required to push incoming ships onto the berth. The
number of tugs required to assist in berthing may vary depending on the size of the
ship and the location of the destination berth.

Tugs working on two successive outbound or inbound ships must travel back to
berth or to sea after completing the first job. Since tugs are much smaller than cargo
ships, they are not constrained by draft, and can therefore travel around other ships
in the channel. Tugs working on an incoming ship followed by an outgoing ship, or
vice versa, have a much shorter travel time from the end of their first job to the start
of the second, as they do not need to travel back along the channel to reach their next
ship.

See Port Hedland Port Authority [2013c] for a detailed description of the tug
guidelines for ships currently in effect at Port Hedland. Other ports may have slightly
different rules regarding tugs, or may need additional resource constraints to be
added, such as constraints on the availability of ship pilots, for example. However,
the general approach presented in this thesis, where tugs must be in use for the
duration of the ship transit, and some length of time is required for tugs to transfer
between successive ships, would apply to all other ports where tugs are used to
assist in ship arrivals and departures, even if the specifics of the times required may
change.

There has been some prior research on tug scheduling, such as the work of Yan et
al. [2009]. However, in our problem, consideration of tug availability is only required
as a constraint in the larger ship schedule optimisation problem, so assigning all
individual tugs to ships may not be required.

3.3.1 Modelling Approaches

Tug availability depends on the number of tugs currently in operation at the port,
the number of tugs required to bring each ship into or out of the port, and the length
of time the tugs are in use for on each ship. The length of time required for a tug to
become available again after assisting a ship depends on the origin and destination
of the ship; the origin of the tug’s next ship (since this affects the travel time of the
tug from one ship to the next); whether the tug is required to push an incoming ship
onto the berth; and port-specific operational rules, such as the location in the channel
where tugs detach from outgoing ships and attach to incoming ships. This results in
action durations in the model being highly sequence dependent.
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Our first attempt at modelling the tug constraints involved assigning individual
tugs to ships. However, this approach turned out to be too slow to find the optimal
solution, since the already large number of interactions caused by the sequence-
dependent waiting times between ships were compounded by the highly sequence-
dependent waiting times between tugs becoming available for successive ships.

To address this issue, we created a modified model which only tracked the num-
ber of tugs busy at each point in time, rather than explicitly allocating tugs to ships.
However, because the delay between the start of successive jobs for a tug was depen-
dent on the sequence of jobs performed by each tug, this new model still required
tracking origins and destinations for tugs, which was still too slow to find an optimal
solution.

3.3.2 Successful CP Model

Our third attempt at modelling the tug constraints successfully used features of the
problem to simplify the constraints, enabling realistic-sized ship schedules to be op-
timised within a few minutes.

There are two problem features, or simplifying assumptions, that turned out to
be critical to simplifying the tug constraints.

1. The port has a single channel leading from sea to the berths, which can only be
used in one direction at a time.

2. The berths are close enough together that the travel time for tugs moving from
a berth to sea or vice versa can be considered independent of the berth location.

Assumption 1 holds at Port Hedland, as well as the majority of other draft-
constrained ports, with some exceptions. Multiple channels would significantly in-
crease the complexity of the tug constraints, so extending this model to ports with
multiple channels would be a non-trivial task. Assumption 2 is also the case at Port
Hedland, and is likely to apply at the majority of ports. However, at ports where
berths are spaced far apart compared to the length of the channel, a model based on
this assumption would need extension to avoid reducing schedule quality.

Assumption 1 implies that a schedule of ships can be split up into component
scenarios of four possible types:

1. A sequence of outgoing ships

2. A sequence of incoming ships

3. An outgoing ship followed by an incoming ship

4. An incoming ship followed by an outgoing ship

The tug availability constraints can be considered separately for the incoming and
outgoing scenarios, thus making the combined ship schedule optimisation problem
much simpler. Figure 3.3 shows a schedule broken up into these four component
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Figure 3.3: Splitting a schedule of ships into scenarios for tug counting

scenarios. In practice, at an export port, outgoing ships are generally full and in-
coming ships are empty, so good quality schedules will generally schedule incoming
ships on the shoulders of the tide, and outgoing ships around high tide. Because of
the long time delay required between ships using the channel in different directions,
good quality schedules are unlikely to involve ships switching direction more than
once from incoming to outgoing, and once from outgoing to incoming, as shown in
Figure 3.3.

Scenarios 1 and 2: For a sequence of outgoing ships or a sequence of incoming
ships, the turnaround time between successive jobs for a given tug is independent
of berth location (Assumption 2), and therefore does not depend on the sequence of
jobs, as long as both jobs are in the same direction.

Scenario 3: At Port Hedland, the tugs transfer from the outgoing ship to the in-
coming ship while the ships are in transit, so no additional delay is required. For
ports where there is a delay for tug transfer from an outgoing ship to an incoming
ship, Scenario 3 can be modelled similarly to Scenario 4 below.

Scenario 4: Tugs moving from an incoming ship followed by an outgoing ship
require a delay between the end of the first job and the start of the second job. This
can be modelled by introducing an extra variable for outgoing ships, to specify how
many tugs are still busy prior to that ship’s departure time due to having recently
completed an incoming job. We do not need to consider tugs used for all incoming
ships when calculating the number of tugs available for outgoing ships; only tugs
used on any ship that arrives just before an outgoing ship leaves – one ship at most
in any given schedule, due to the separation time constraints between ships. The
duration of the extra delay for tugs moving from an incoming to an outgoing ship
may vary based on the locations of the destination and origin berths.
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Our initial approach to tug constraints had to calculate whether the number of
tugs used by both incoming and outgoing ships at each point in time met the con-
straint on the number of tugs available, which was very complex due to the minimum
time between successive ships being different depending on the previous and next
ship for each tug. However, by splitting the schedule into scenarios, we can instead
have two separate constraints – a constraint to ensure that the number of tugs used
by incoming ships (plus tugs still busy after being used for the latest outgoing ship –
always zero for Port Hedland) never exceeds the number of tugs available; and a sec-
ond constraint to ensure that the number of tugs used by outgoing ships (plus tugs
still busy after being used for the latest incoming ship) never exceeds the number of
tugs available.

The main difference between this approach and the second attempt to model tugs
is: instead of counting the number of tugs busy at each point in time for the entire
sequence of ships, this approach counts the number of tugs that are unavailable for
an outgoing ship due to still being in use on other outgoing ships, or on a recent
incoming ship whose time overlaps with an outgoing ship, and separately counts the
number of tugs that are unavailable for use on an incoming ship due to still being
in use from a previous incoming ship. Tugs that were working on outgoing ships
are never considered busy for incoming ships, since the channel can only be used
in one direction at once, so outgoing tugs can transfer straight to the next incoming
ship without having to wait. The separation time constraints already allow for all
the waiting time required between an outgoing and the next incoming ship. The set
of tugs busy for incoming ships and the set of tugs busy for outgoing ships can be
separately checked to ensure they do not exceed the number of tugs available, since
the tugs used for incoming ships cannot affect outgoing ships other than as described
here, and vice versa. This separates the very complex tug constraints produced by
tracking tugs on all ships at once into two much simpler, less strongly connected sets
of constraints.

3.3.3 Tug Variables and Parameters

Adding tug availability constraints to the CP formulation of the ship scheduling
problem with time-varying draft requires the following additional parameters and
dependent variables.

Let Umax be the number of tugs available at the port. Let I and O be the sets of
incoming and outgoing ships.

G(v) is the number of tug groups required for vessel v, where a tug group is a
set of tugs that spend the same length of time working on that ship. For example, an
incoming ship that requires four tugs to bring it into port, and two of those tugs to
push it onto the berth would have two groups containing two tugs each.

Let H(v, g) be the number of tugs in group g of vessel v. Gmax is the maximum
number of groups of tugs required for any ship.

r(v, g) is the "turnaround time" – the time taken for tugs in group g of ship v to
become available for another ship in the same direction (incoming vs outgoing).
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X(vi, vj) is the extra time required for tugs from incoming vessel vi to become
available for outgoing vessel vo. X(vi, vj) is 0 for tugs moving from an outgoing
ship to an incoming ship for Port Hedland, and for all the problems we consider in
this paper, since tugs can transfer from an outgoing ship to an incoming ship on the
move; however, this may not be the case for some ports.

U(v, t, g) is a dependent variable that specifies the number of tugs busy in tug
group g of vessel v at time t, assuming the next ship for these tugs is in the same
direction. x(v, t) defines the number of extra tugs that are busy at time t for an
outgoing vessel v, due to still being in transit from the destination of an earlier
incoming ship.

Finally, L(v, t) specifies that the extra tug delay time for incoming vessel v over-
laps with the sailing time of an outbound vessel at time t, so these tugs still need to
be taken into account in the tug availability constraints for the set of ships going in
the opposite direction from v.

Parameters
The following tables summarise the parameters and variables used to add tug con-

straints to the CP model for easy reference. The model uses the following parameters:

Umax Number of tugs available.
O Set of outgoing ships.
I Set of incoming ships.
G(v) Number of groups of tugs required for vessel v ∈ V.
H(v, g) Number of tugs in group g of vessel v.
Gmax Maximum number of groups of tugs required for any vessel

v ∈ V.
r(v, g) "Turnaround time" – the time taken for tugs in group g of vessel

v ∈ V to become available for another ship in the same direction
(incoming vs outgoing).

X(vi, vj) Extra time required for tugs from incoming vessel vi ∈ I to
become available for outgoing vessel vo ∈ O

Variables
The variables used in the model are as follows:

U(v, t, g) Number of tugs busy in tug group g of vessel v ∈ V at time t,
assuming the next ship for these tugs is in the same direction.

x(v, t) Number of extra tugs busy at time t for an outgoing vessel v ∈
O, due to still being in transit from the destination of an earlier
incoming ship.

L(v, t) Binary variable specifying that the extra tug delay time for in-
coming vessel v ∈ I overlaps with the sailing time of an out-
bound vessel at time t
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3.3.4 Tug Constraints

Scenarios 1 and 2: One-Directional Sequence of Ships

s(v) = 1∧ t ≥ T(v) ∧ t < T(v) + r(v, g)⇒ (3.7)

U(v, t, g) = H(v, g),

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

s(v) = 0∨ t < T(v) ∨ t ≥ T(v) + r(v, g)⇒ (3.8)

U(v, t, g) = 0,

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

These constraints specify the number of tugs busy at each time t for a one-
directional sequence of ships. The number of tugs busy U(v, g, t) at time t in group
g of vessel v is equal to the total number of tugs in that tug group, H(v, g), if and
only if the vessel is included in the schedule (s(v) = 1), and the vessel has already
begun sailing at time t (the scheduled sailing time T(v) is no later than t), and the
turnaround time r(v, g) for that tug group to become available for the next job in the
same direction has not yet passed.

Scenario 4: Incoming Followed By Outgoing

L(vi, t) ⇐⇒ ∃ vo ∈ O s.t. (3.9)

t = T(vo) ∧ T(vi) ≤ T(vo)∧
T(vi) + max

g∈[1,G(vi)]
r(vi, g) + X(vi, vo) > T(vo),

∀ vi ∈ I, t ∈ [1, Tmax]

x(vi, t) = bool2int(L(vi, t)) · ∑
g∈[1,G(vi)]

H(vi, g), (3.10)

∀ vi ∈ I, t ∈ [1, Tmax]

The constraints in Equation (3.9) specify that the "overlap" flag, L(vi, t) is true iff
the extra tug delay time X(vi, vo) overlaps with the scheduled sailing time T(vo) of
at least one incoming vessel, vo.

The constraints in Equation (3.10) express the requirement that for any incoming
vessel vi, the tugs from that vessel are still considered busy for vessels travelling in
the opposite direction if the "overlap" flag L(vi, t) is true. This constraint is over-
conservative in the event of different groups of tugs on an incoming ship being in
use for different periods of time, for example, if an incoming ship needs 4 tugs to
guide it into port, then 2 tugs for an additional half-hour to push the ship onto the
berth. For a port where such a situation occurs often and negatively affects schedules,
these constraints can be made less conservative by making the parameters L(vi, t)
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and X(vi, vo) dependent on tug group, and modifying Equations (3.9) and 3.10 to
calculate the extra delay for each tug group separately.

Scenario 3: Outgoing Followed By Incoming

x(vo, t) = 0, ∀ vo ∈ O, t ∈ [1, Tmax] (3.11)

The constraints in Equation (3.11) specify that there is no additional delay re-
quired for tugs to transfer from an outgoing ship. For ports where this is not the
case, the additional delay for tugs to transfer from an outgoing ship to an incoming
ship can be modelled similarly to the Scenario 4 constraints above.

Tug Availability Constraints

∑
v∈I

∑
g∈G(v)

U(v, t, g) ≤ Umax, ∀ t ∈ [1, Tmax] (3.12)

∑
vo∈O

∑
g∈G(vo)

U(vo, t, g) + ∑
vi∈I

x(vi, t) ≤ Umax, ∀ t ∈ [1, Tmax] (3.13)

The constraints expressed in Equation (3.12) specify that at each time t, the num-
ber of tugs busy does not exceed the total number of tugs available at the port, Umax.
The total number of tugs in use is given by the sum of U(v, t, g) over all tug groups
g, for all incoming vessels v ∈ I. These constraints ensure that the resulting sched-
ule satisfies the tug availability constraints for all sequences of incoming vessels –
Scenario 2 in our set of four possible sequences of vessels described in Section 3.3.2.

The constraints expressed in Equation (3.13) represent the same requirement for
outgoing vessels – Scenario 1. However, the total number of busy tugs also includes
any tugs were still busy at time t due to having recently completed an incoming job
and not yet having had time to transfer to the outgoing ship (X(vi).(t = T(v)). Thus
the constraints in Equation (3.13) ensure that the resulting schedule satisfies the tug
availability constraints for both Scenarios 1 and 4.

As mentioned in Section 3.3.2, for problems considered in this thesis, Scenario 3 is
ignored, since tugs moving from an outgoing ship to an incoming ship are assumed
to not require any extra time to make the transfer. However, for a port where this
assumption does not hold, Scenario 3 can be modelled similarly to Scenario 4.

The following chapter investigates different search strategies and improvements
to this model aimed at improving scalability, as well as investigating alternative mod-
els to the CP model presented in this chapter. Chapter 5 introduces a prototype
software system that uses this CP model to solve the BPCTOP for a real bulk export
port, and presents an analysis of the quality of schedules produced by this model as
compared to human schedulers at Port Hedland.



Chapter 4

Scalability Improvements: Search
Strategies and Alternative Models

As discussed before in Chapter 2, the performance of CP solvers is highly depen-
dent on the strategies used to choose variables and split domains in the backtracking
search. This chapter therefore investigates different search strategies for solving the
Bulk Port Cargo Throughput Optimisation Problem with time-varying draft restric-
tions.

While a good choice of search strategy was able to produce results for realistic-
sized problems within a reasonable time, if this problem is to be used as a subprob-
lem in larger routing and scheduling problems, further improvements to the cal-
culation speed would be beneficial. This chapter therefore also investigates several
improvements to the CP model to improve scalability for this problem. Finally, the
CP model is compared against a MIP model and a Benders decomposition approach,
which are more traditionally used to solve optimisation problems in maritime trans-
portation.

The specific results of the search strategy and CP model comparisons presented
in this chapter are quite implementation-dependent and may not apply to all CP
solvers, but these results have broader implications, both in terms of investigating
how much effect search strategies and modelling approaches can have on solver
runtime, and in terms of identifying possible improvements to the performance of
the CP solver used in this chapter for other problems.

4.1 Experimental Data

In Chapter 5, the schedules produced by the CP model are compared against real
schedules created by human schedulers at Port Hedland, to investigate how optimal
schedules differ in quality. However, this chapter investigates the calculation time
of different approaches to solving the BPCTOP CP model, so we used generated
data instead of a real data set, as this allowed us more control to systematically vary
properties of the problems to see how problem characteristics affected performance.
Using generated data also allowed us to test the performance of each approach with

55
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larger problem sizes than are currently found in the real world, to ensure that per-
formance is sufficient for near-future growth in port capacity.

4.1.1 Port Characteristics

To test performance of different search strategies and modelling approaches, we gen-
erated a data set based on a fictional but realistic port, similar to the ship_scheduling
data set used for the 2011 MiniZinc Challenge [University of Melbourne, 2011]. The
reason for using a fictional port was again, so that the maximum problem size in our
data set would not be constrained by the number of berths currently available at Port
Hedland. We wanted to test the performance of our approach on larger problem
sizes than the largest bulk export port in existence today to allow for future growth
in port capacity.

The geography of the fictional port was generated manually by defining a number
of berths at varying distances from the most constrained point of the channel. The
port safety rules were based on the ones at Port Hedland, as defined by the Port
User Guidelines and Procedures [Port Hedland Port Authority, 2013c]. Minimum
separation time requirements for our fictional port were calculated manually between
every possible ordered pair of ships sailing from different berths as follows, based
on the separation times defined in the Port User Guidelines and Procedures for Port
Hedland:

• Outbound followed by outbound: the two ships should have a separation time of
30 minutes at a key waypoint along the channel, past the locations of the berths.
This ensures that the ships will have sufficient separation time between them
for the entire transit, regardless of which berths they leave from.

• Inbound followed by inbound: inbound ships must berth facing towards the chan-
nel exit, to ensure faster departure speeds for the more tightly constrained
outbound (loaded) ships. This means that inbound ships must sail to the end
of the channel and turn around prior to berthing, resulting in longer separa-
tion times being required between inbound ships. Separation times between
inbound ships were calculated to ensure that there would always be sufficient
separation distance between ships based on the path taken to reach their berth
locations.

• Outbound followed by inbound: the inbound vessel should enter the channel only
after the outbound vessel has passed the selected channel entry point. The
separation time therefore depends on the time taken for the outbound vessel to
reach the inbound vessel’s channel entry point, which varies with the berth the
outbound vessel sails from, but does not vary with the destination berth of the
incoming ship.

• Inbound followed by outbound: the outbound vessel should only begin sailing
when it is safe to do so, ie. when the inbound vessel has passed the berth (in
the case of an outbound vessel sailing from a berth closer to the channel exit)
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or when the inbound vessel has arrived at its destination berth and is no longer
blocking the channel, in the case of an outbound vessel sailing from further
away from the channel exit. The separation times vary with the berths of both
ships. The Port User Guidelines and Procedures for Port Hedland also describe
a manoeuvre called a "double shuffle", where an incoming ship can enter the
port prior to the departure of the outgoing vessel from its destination berth.
The outgoing vessel then departs while the incoming ship is turning around.
This manoeuvre is also taken into account in the safety rules defined for the
data set used in this chapter.

Tug requirements for each ship are also defined in the Port User Guidelines and
Procedures, specifying the number of tugs required for each section of the transit
and for each ship size category. For the generated data set, we assumed that all ships
are of the two largest sizes specified in the Port User Guidelines and Procedures,
requiring 3-4 tugs each, since smaller ships are much less tightly constrained and can
sail on the shoulders of the tide. Smaller ships also use fewer tugs, so the schedule
for a set of smaller ships will be constrained by the separation time between ships,
not the number of tugs available. The number of tugs available at the port was set
to 12 – large enough to have three large ships underway simultaneously, but small
enough to constrain the schedule, as is currently the case at Port Hedland.

4.1.2 Problem Instances

In each problem instance, ships were generated to sail to or from one berth. All
outgoing ships sailed from different berths; some incoming ships sailed to a berth
that was initially empty, whereas other ships sailed to a berth that was also used by
an outgoing ship, thus requiring that the outgoing ship clear the berth before the
incoming ship arrived.

Each ship had a corresponding earliest departure time, with at least 50% of ships
in each problem able to sail from the start of the time range, but some ships needing
to wait until later in the planning period, up to the peak of the high tide, to simulate
a ship running late loading.

The planning horizon was 6 hours for each problem instance, with a maximum
draft being defined for each ship at every 5 minutes using a sinusoidal function.
In real data, the maximum draft function will also be affected by the height of the
waves at different frequencies, the shape of the ship, the speed of the ship at each
point along the transit, and other factors. However, while these factors are all vital
to the quality of schedules calculated from a real data set, they do not have any sig-
nificant effect on the calculation time required to solve the ship scheduling problem,
since the scheduling problem combines all of these factors into a single maximum
draft value for each ship at each five-minute time increment. Therefore, for the pur-
poses of investigating the calculation time of different approaches in this chapter, the
maximum draft for each ship was modelled as a simple sine function, with a plateau
around the peak for some ships, to simulate structural limitations capping the draft
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of some ships. Each ship also had a minimum draft that it could sail with, to simu-
late the fact that some ships may already be partially loaded at the time the schedule
is being calculated, as well as the fact that it could be more economical for a ship
to wait until the next high tide rather than sail with a huge reduction in amount of
cargo carried.

The data set used for performance comparisons contained problems of four sub-
sets that represent different physical situations, varying in terms of how tightly con-
strained the problems are.

1. OneWay_Narrow: The most tightly constrained problems: all ships are sailing
in the same direction (outbound), and the outbound ships have high maximum
drafts, so each ship is only able to sail with its maximum draft during a narrow
window around the peak of the tide. The peak of the tide is oversubscribed –
not all ships will be able to sail with their maximum drafts.

2. Mixed_Narrow: Moderately constrained problems: ships are split evenly be-
tween inbound and outbound, and outbound ships have high maximum drafts
with narrow peak draft windows. Inbound ships are not draft constrained and
may sail at any time, subject to separation time and tug constraints.

3. OneWay_Wide: Moderately constrained problems with all outbound ships, but
with lower maximum drafts, leading to wider time windows when ships can
sail with their maximum draft, and a less tightly constrained schedule.

4. Mixed_Wide: The least tightly constrained problems, with ships evenly split
between inbound and outbound, and with low maximum drafts and wide sail-
ing windows for outbound ships.

Wide problems are less constrained than Narrow problems, and Mixed problems
are less constrained than OneWay problems, though Mixed problems also result
in more complex tug constraints coming into effect due to the interaction between
inbound and outbound ships.

Each problem subset consisted of 7 problems ranging from 4 to 10 ships sailing
on a single tide. Port Hedland set a record of five draft-constrained ships sailing on
a single tide in 2009 [OMC International, 2009], so 4-10 ships sailing on a single tide
are are realistic sized problems, and the largest problem sizes allow for some growth
in port capacity.

Each problem type was considered both with and without tug constraints, to
investigate how tug constraints affect performance for different approaches, since
not every port will have tugs as the bottleneck in ship scheduling. This resulted in a
total of 4 · 7 · 2 = 56 different problem instances.

4.2 Search Strategies

The model described in Chapter 3 was formulated in the MiniZinc 1.4 modelling lan-
guage, described by Nethercote et al. [2007, 2010], and solved with the finite domain
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Figure 4.1: (a) Time search. (b) Draft search.

CP solver included in the G12 optimisation platform [Stuckey et al., 2005]. The G12
finite domain CP solver uses standard backtracking search, and allows a choice of
variable selection and domain reduction strategies to be used for solving the prob-
lem.

There were two main reasons for the choice of MiniZinc and the G12 FD solver:
firstly, the model was intended to be used in a commercial ship scheduling system, as
discussed in Chapter 5, and due to budget limitations of the initial prototype project,
a solver that was free for commercial use was preferred. Secondly, we wanted to
model our problem in MiniZinc, since it is a generic modelling language which can
be used as input to many different solvers, thus leaving the option open of switching
to a different solver in future if our first choice of solver turned out to be unable
to solve realistic sized problems. The G12 FD solver is usable with MiniZinc and is
BSD-licensed, which made it a good first choice for the prototype.

4.2.1 Draft vs Time Search

In the CP model for the BPCTOP presented in Chapter 3, the only decision variables
are the sailing times T(v) for each vessel v and the boolean variables s(v) which
specify whether each ship v is included in the schedule. All approaches investigated
in this chapter initially search on s(v). The optimal schedule always includes as
many ships as possible, so s(v) is set to 1 initially for every ship before searching
schedules where some ships are not included. Note that in this chapter, all vessels
can be included for every problem.

The values of the other variables – the draft D(v, T(v)), the objective function
component for each ship (s(v).C(v).D(v, T(v)) for the simple objective function that
maximises total throughput), and the dependent variables used in the tug constraints
– are all functions of time. However, for this problem, it may be more efficient to
search on a dependent variable that directly impacts the objective function, such as
draft D(v, T(v)), or the objective function component for each vessel, rather than
searching on ship sailing time directly after setting s(v) to 1.

Figure 4.1(a) shows that splitting the time domain in two might not reduce the
draft domain at all. Searching on time may therefore result in searching regions of
poor-quality solutions first, so searching on time is likely to be slow to converge on
optimal solutions.
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Figure 4.1(b), on the other hand, shows that splitting the draft domain always
reduces the time domain at any port with enough tidal variation to affect vessel
drafts. Searching on draft would thus allows the search to quickly cut out regions of
poor quality solutions, so the search would converge on the optimal solutions much
faster.

Experimental Results
The CP model presented in Chapter 3 was formulated in MiniZinc 1.4 and solved

to optimality for each problem instance using the G12 finite domain CP solver. All
calculations were run on a Windows 7 machine with an Intel i7-930 quad-core 2.80
GHz processor and 12.0 GB RAM, and with a 5-minute (300-second) cutoff time.

Three search strategies – searching first on time, draft, and objective function
component of each ship – were compared for the data set of 56 problem instances – 7
problems of 4 different types, with and without tugs. Table 4.1 presents the number
of ships for the largest problem of each type that could be solved to optimality with
each search strategy within the 300-second cutoff time. (Suboptimal solutions are not
presented.) The numbers in brackets indicate the CPU time in seconds for calculating
the optimal solution for that problem size. The search strategy with the largest
problem solved within the time limit, or the fastest CPU time in the event of a tie, is
highlighted in bold for each problem type.

Each search strategy splits the domain of the corresponding variable about the
mean of its lower and upper bounds. The Time search strategy selects variables with
the smallest initial domain (a first_fail approach), whereas the Draft and ObjFun

search strategies select variables with the largest initial value first to focus on the
highest-quality solutions.

The first step in all search strategies, prior to searching on either the time or
the draft, was to try to include all ships in the schedule by setting s(v) to 1. In
every example problem, all ships could be included. If some ships could not be
included, the ship or ships with the smallest impact on the objective function would
be left out of the schedule, and would have to be moved to the next tide. For an
objective function that considers user-defined priorities for ships, such as the more
complex objective function described in Chapter 3, any delayed ships could have their
priorities increased by the user to ensure that the same ship wouldn’t get delayed
multiple times.

Alternative search strategies such as selecting the maximum value in the domain
first, or choosing the variable with the smallest domain for the Draft and ObjFun

search strategies, are discussed in Section 4.2.2.

Discussion
The results in Table 4.1 show that, as expected, the addition of tug constraints

significantly increases the CPU time required to solve the problems, so that the max-
imum number of ships that can be scheduled within the cutoff time gets reduced by
1-2 ships on average with the addition of tug constraints.
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Problem ObjFun Draft Time

Mixed_Wide 10 (5.91) 10 (3.07) 4 (26.73)
OneWay_Wide 10 (18.5) 10 (16.9) 4 (11.47)

Mixed_Narrow 8 (160) 8 (20.8) 6 (195.46)
OneWay_Narrow 8 (48.7) 8 (74.3) 7 (63.29)
Mixed_Wide_Tugs 10 (175) 10 (83.3) 4 (40.85)

OneWay_Wide_Tugs 8 (39.7) 8 (16.3) 4 (8.67)
Mixed_Narrow_Tugs 7 (250) 7 (24.4) 5 (137.71)

OneWay_Narrow_Tugs 6 (23.2) 6 (15.4) 6 (76.82)

Table 4.1: ObjFun vs Draft vs Time search – number of ships in the largest problem
solved within the cutoff time, with CPU time in seconds in brackets.

OneWay problems are more severely affected by the addition of tug constraints,
probably because OneWay problems are more tightly constrained than Mixed prob-
lems, due to the incoming ships in the Mixed problems having low draft and there-
fore wide sailing windows. This results in tug constraints causing more disruption
to OneWay problems than to Mixed problems.

Table 4.1 also shows that, as expected, the Draft and ObjFun search strategies
can solve larger problems to optimality for every problem type. This approach of
searching on a dependent variable that is more closely linked to the objective rather
than searching on time may be useful for other problems with complex time-varying
objective functions.

4.2.2 Searching on Draft

Section 4.2.1 showed that searching on draft or the objective function component
of each ship allowed larger problems to be solved to optimality than searching on
time directly. It is clear that the choice of search strategy can have a large impact
on the time taken to prove optimality, so this section investigates search strategies in
more depth, comparing the effects on CPU time of the variable selection and domain
splitting methods when searching on draft or objective function component.

The first step in all search strategies, as in Section 4.2.1, tries to include all ships
in the schedule by setting s(v) to 1. After including all ships in the schedule, two
different domain splitting methods and two different variable selection methods are
compared for both Draft and ObjFun search.

The two domain splitting methods considered in this section are Max, which sets
the domain of a variable to its maximum possible value, and Mean, which splits the
domain of a variable about the mean of its lower and upper bounds and searches the
upper half first. Both approaches backtrack and continue searching if no solution is
found.

The two variable selection methods considered in this section are Largest, which
chooses the variable with the largest upper bound to search on first; and FirstFail,
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Problem Largest_Mean Largest_Max FirstFail_Mean FirstFail_Max

MW 10 (3.93) 10 (4.15) 10 (3.95) 10 (3.51)
OW 10 (1.31) 10 (1.55) 10 (1.11) 10 (1.22)
MN 8 (148) 7 (299) 10 (0.45) 10 (0.77)
ON 8 (44.1) 8 (31.5) 8 (70.7) 8 (57.7)

MWT 10 (117) 10 (184) 10 (117) 10 (181)
OWT 8 (1.65) 8 (1.76) 8 (2.42) 8 (2.53)
MNT 7 (184) 6 (60.1) 8 (2.31) 8 (2.86)
ONT 6 (7.33) 6 (10.8) 6 (17.7) 6 (18.7)

Table 4.2: ObjFun search – number of ships in the largest problem solved within the
cutoff time, with CPU time in seconds in brackets.

Problem Largest_Mean Largest_Max FirstFail_Mean FirstFail_Max

MW 10 (3.17) 10 (3.07) 10 (3.38) 10 (2.64)
OW 10 (0.45) 10 (1.22) 10 (1.42) 10 (1.44)
MN 10 (7.99) 9 (299) 10 (141) 8 (114)
ON 8 (42.5) 8 (48.2) 8 (50.5) 8 (35.0)

MWT 10 (115) 10 (182) 10 (115) 10 (180)
OWT 8 (1.76) 8 (1.76) 8 (1.76) 8 (1.76)
MNT 8 (4.06) 8 (143) 8 (104) 8 (210)
ONT 6 (10.3) 6 (25.8) 6 (16.4) 6 (14.7)

Table 4.3: Draft search – number of ships in the largest problem solved within the
cutoff time, with CPU time in seconds in brackets.

which searches first on the variable with the smallest domain.
Each domain splitting and variable selection method was used to solve all prob-

lem types, with both the Draft and ObjFun search strategies, resulting in eight
different search strategy combinations. The results comparing these eight search
strategies are presented in Tables 4.2 and 4.3.

Experimental Results
The same set of problems as in Section 4.2.1 were solved with each of the above

eight search strategies. As in Section 4.2.1, all calculations were run with a 300-second
cutoff time.

Tables 4.2 and 4.3 show the largest problem solved to optimality within the cutoff
time for each problem type and each search strategy. CPU time is given in brackets,
and bold font indicates the search strategy (Largest_Mean, Largest_Max, First-
Fail_Mean or FirstFail_Max) that was able to solve the largest problem, or the one
with the shortest CPU time in case of a tie. Italicised bold numbers indicate that this
search strategy was fastest out of the fastest Draft and fastest ObjFun approaches.

Table 4.2 compares each domain splitting and variable selection combination for
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ObjFun search, for each of the 4 problem types, with and without tugs. Table 4.3
compares CPU times for Draft search with each domain splitting and variable se-
lection combination, using the same set of example problems.

Wide vs Narrow
For all problem types and search strategies in Tables 4.2 and 4.3, problems with

Narrow windows are significantly harder to solve than problems with Wide win-
dows. In the Narrow problem, there is not enough time for all ships to sail close
to the peak of the high tide, so not all ships can get their optimal objective function
values. Narrow windows thus result in a much more tightly constrained problem,
whereas wide windows allow enough time for all ships to sail at or close to their
peak draft so the problem is not as tightly constrained. For each of the problems and
search strategies investigated, narrow windows resulted in 1-4 less ships able to be
scheduled within the cutoff time due to the more constrained problem increasing the
difficulty of finding the optimal schedule.

OneWay vs Mixed
Tables 4.2 and 4.3 show that while OneWay problems where all ships are outbound

are usually harder to solve than Mixed problems where ships are evenly split be-
tween inbound and outbound, this is not always the case. Mixed problems are easier
to solve most of the time, probably due the fact that incoming ships sail empty, and
therefore have very wide windows, resulting in Mixed problems being less tightly
constrained than OneWay problems. However, in some circumstances, this may be
counteracted by the fact that Mixed problems have additional tug constraints and
berth availability constraints coming into effect. The more complex Scenario 4 tug
constraints need to be considered whenever we have a problem that includes both
incoming and outgoing ships. Constraints on the berth for the incoming ship being
available are also only considered when the problem includes both incoming and
outgoing ships.

Search Strategies
Search strategies which searched on the objective function component of each ship

(ObjFun) were faster than the search strategies that searched on Draft for all prob-
lems except Mixed_Wide problems with and without tugs – the least constrained
type of problem, which was solved quite quickly by all search strategies.

For both Draft and ObjFun search, splitting the domain at the Mean produced
better results than choosing the Max value in the domain for the majority of prob-
lems. Also, the Mean domain reduction strategy solved problems with the same
number of ships as the best solution for all cases, whereas the Max domain reduc-
tion strategy failed to solve problems of this size for several problem types. In almost
all cases, therefore Mean is the more effective domain reduction strategy for both
ObjFun and Draft search.

For Draft search with Mean domain reduction strategy, the Largest variable
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selection strategy performed better than FirstFail on all problem types. For ObjFun

search with Mean domain reduction, the Largest variable selection strategy was
faster to find the optimal solution for more problems, but the FirstFail variable
selection approach offered a much larger reduction in CPU time for those problems
where it outperformed the Largest variable selection strategy.

Draft with Largest variable selection and Mean domain reduction was the most
consistent search strategy, finding optimal solutions for all problems within 11 sec-
onds of the best time. Four of the other search strategies – ObjFun_Largest_Mean,
ObjFun_Largest_Max, Draft_Largest_Max and Draft_FirstFail_Max – fail to
solve problems of the same size as the best solution for some problems. The remain-
ing three search strategies – ObjFun_FirstFail_Mean, ObjFun_FirstFail_Max and
Draft_FirstFail_Mean – all exceed the calculation time of the fastest solution by at
least 30 seconds for at least one problem.

Summary
It is clear that the choice of search strategy has a huge impact on the time to prove

optimality. The best choice of search strategy is likely to vary for different ports,
which may have slight variations in the tug constraints and in how oversubscribed
or undersubscribed the problem is. The best search strategy may also vary between
different solvers, due to the interaction between solver implementation and the user-
defined search strategy.

For the G12 finite domain solver and the data set considered in this chapter,
which is similar to problems at Port Hedland, the Mean domain reduction strategy
was faster than Max for almost all problems, and Largest variable selection was
consistently faster for Draft search, whereas FirstFail performed better on average
for ObjFun search. While ObjFun search was fastest to find a solution for the largest
number of problems, Draft with Largest variable selection and Mean domain re-
duction was the most consistently fast across the full set of problems.

In the rest of this chapter, Draft search with Mean domain reduction and Largest

variable selection will therefore be used unless stated otherwise, since for the G12
finite domain solver, this search strategy was consistently close to the shortest calcu-
lation time for all problem types.

4.3 Mixed Integer Programming Model

This section presents a Mixed Integer Programming (MIP) model for the Bulk Port
Cargo Throughput Optimisation Problem (BPCTOP), and compares the effectiveness
of the G12 OSI CBC MIP solver against the G12 finite domain CP solver for proving
optimality for this problem.

4.3.1 Variables and Parameters

The MIP model uses the same parameters as those introduced for the CP model
in Chapter 3; however, some of the variables in the MIP model differ from the CP
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model.
s(v, t) ∈ [0, 1] is a binary variable which specifies whether the ship v is scheduled

to sail at time t.
T(v) ∈ [1, Tmax] defines the time slot at which vessel v is scheduled to sail. T(v)

is specified by the equation:

T(v) = ∑
t∈[1,Tmax ]

s(v, t) · t ∀ v ∈ V (4.1)

Summary
The following table summarises the parameters and variables used in the MIP

model with no tug constraints. The parameters are identical to those used for the CP
model in Chapter 3; they are only summarised here for convenience.

Parameters
V Set of vessels.
[1, Tmax] Range of discretised time indices.
E(v) Earliest departure time for vessel v ∈ V.
D(v, t) Maximum allowable draft for vessel v ∈ V at time t.
ST(vi, vj) Minimum separation time between vessels vi, vj ∈ V.
B Set of pairs of incoming and outgoing ships using the same

berth.
Bi(b), Bo(b) Incoming and outgoing ships in pair b ∈ B.
d(b) Minimum delay between the sailing times of vessels Bi(b), Bo(b)

for b ∈ B.
Objective Function Parameters

C(v) Tonnage per centimetre of draft for vessel v ∈ V.
MD(v) Minimum target draft requested for vessel v ∈ V.
R(v) Specifies whether vessel v ∈ V is scheduled to sail with its tar-

get draft MD(v).
P(v) Priority for vessel v ∈ V getting its target draft MD(v).
W Weighting of the primary objective in a 2-objective function.

Variables
s(v, t) Binary variable specifying whether vessel v ∈ V sails at time t.
T(v) ∈ [1, Tmax] Dependent variable specifying the scheduled sailing time for

vessel v ∈ V.

4.3.2 Constraints

Ship Uniqueness Constraint

∑
t∈[1,Tmax ]

s(v, t) ≤ 1, ∀ v ∈ V (4.2)
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Specifies that each vessel v ∈ V sails at most once in the schedule.

Earliest Departure Time Constraint

T(v) ≥ E(v), ∀ v ∈ V (4.3)

The Earliest Departure Time constraint is identical to the CP model in Chapter 3,
but the MIP constraint does not need to consider whether the ship is included in the
schedule. This constraint has no effect in the MIP model if the ship is not included in
the schedule, due to the separation time and tug constraints being ignored for ships
that are not in the schedule.

Berth Availability Constraints

T(Bo(b)) ≤ T(Bi(b))− d(b), ∀ b ∈ B (4.4)

∑
t∈[1,Tmax ]

s(Bo(b), t) ≥ ∑
t∈[1,Tmax ]

s(Bi(b), t), ∀ b ∈ B (4.5)

These constraints ensure that the berths for any incoming ships are empty before
the ship arrives. Equation (4.4) specifies that for every pair of incoming and outgoing
ships Bi(b) and Bo(b) that share the same berth as their destination and origin, the
scheduled sailing time T(Bi(b)) of the incoming ship must be later than the sailing
time T(Bo(b)) of the outgoing ship by a delay of at least d(b). Equation (4.5) specifies
that if the incoming ship is included in the schedule – ∑t∈[1,Tmax ] s(Bi(b)) > 0 – then
the outgoing ship must also be included in the schedule.

Separation Time Constraints

s(vi, t) + ∑
t′∈[t,min (Tmax ,t+ST(vi ,vj)−1)]

s(vj, t′) ≤ 1 (4.6)

s(vj, t) + ∑
t′∈[t,min (Tmax ,t+ST(vj,vi)−1)]

s(vi, t′) ≤ 1

∀ vi, vj ∈ V, t ∈ [1, Tmax]

These constraints are the CP Separation Time Constraints converted to linear
form. These constraints represent the requirement that for each pair of ships vi, vj
either vi sails first, followed by vj with a minimum separation time ST(vi, vj) between
them, or vj sails first, followed by vi with a minimum separation time ST(vj, vi)
between them.

4.3.3 Tug Variables and Parameters

Converting the tug constraints into Mixed Integer Programming form uses all the
same variables and parameters as the CP model.
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Parameters
The following tables summarise the parameters and variables used to represent

tug constraints in the MIP model. These are identical to the CP model and are only
reproduced here for convenience. The model uses the following parameters:

Umax Number of tugs available.
O Set of outgoing ships.
I Set of incoming ships.
G(v) Number of groups of tugs required for vessel v ∈ V.
H(v, g) Number of tugs in group g of vessel v.
Gmax Maximum number of groups of tugs required for any vessel

v ∈ V.
r(v, g) "Turnaround time" – the time taken for tugs in group g of vessel

v ∈ V to become available for another ship in the same direction
(incoming vs outgoing).

X(vi, vj) Extra time required for tugs from incoming vessel vi ∈ I to
become available for outgoing vessel vo ∈ O.

Variables
The variables used in the model are as follows:

U(v, t, g) Number of tugs busy in tug group g of vessel v ∈ V at time t,
assuming the next ship for these tugs is in the same direction.

x(v, t) Number of extra tugs busy at time t for an outgoing vessel v ∈
O, due to still being in transit from the destination of an earlier
incoming ship.

L(v, t) Binary variable specifying that the extra tug delay time for in-
coming vessel v ∈ I overlaps with the sailing time of an out-
bound vessel at time t.

4.3.4 Tug Constraints

Scenarios 1 and 2: One-Directional Sequence of Ships
Converting the constraints for a one-directional sequence of ships to linear form

for the MIP model results in the following constraints.

U(v, t, g) = H(v, g) · ∑
t′∈[min (1,t−r(v,g)+1),t]

s(v, t′) (4.7)

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

These constraints express that for a one-directional sequence of ships, at each
time t, the number of tugs busy U(v, t, g) in group g of vessel v is equal to the total
number of tugs in that tug group, H(v, g), if and only if the vessel has already sailed,
but the turnaround time r(v, g) for that tug group to become available for the next
job in the same direction has not yet passed.
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Scenario 4: Incoming Followed By Outgoing
Converting the Scenario 4 constraints to linear form for the MIP model results in

the following constraints:

x(vi, t) = L(vi, t) · ∑
g∈[1,G(v)]

H(vi, g) (4.8)

∀ vi ∈ I, t ∈ [1, Tmax]

L(vi, t) ≥ s(vo, t) + ∑
t′∈[max (1,t−trange),t]]

s(vi, t′)− 1 (4.9)

∀ vi ∈ I, vo ∈ O, t ∈ [1, Tmax]

where

trange = t− X(vi, vo)− max
g∈[1,G(vi)]

(r(vi, g)) + 1

The constraints in Equation (4.9) specify that the "overlap" flag, L(vi, t) is true
if the sailing time t for an outgoing ship vo overlaps with the extra tug delay time
X(vi, vo) for this incoming vessel vi.

The constraints in Equation (4.8) express the requirement that for any incoming
vessel vi, the tugs from that vessel are still considered busy for vessels sailing in the
opposite direction at time t if the overlap flag L(vi, t) is true.

Scenario 3: Outgoing Followed By Incoming
These constraints are identical to the CP model.

Tug Availability Constraints
These constraints are identical to the CP model.

4.3.5 MIP vs CP Comparison

The MIP model was implemented in MiniZinc 1.4 and solved for all the same exam-
ple problems as those described in Section 4.2, using the MIP OSI CBC solver [Lougee-
Heimer, 2003] included in the G12 optimisation system described by Stuckey et
al. [2005]. Table 4.8 presents the number of ships for the largest problem solved
for each problem type, with the CPU time in brackets, for the MIP model com-
pared against the fastest CP search strategy – ObjFun_FirstFail_Max. For MIP,
the search strategy is set by the solver; however, all CP search strategies that search
first on draft or objective function component outperform the MIP solver, with the
exception of the Mixed_Narrow problems without tug constraints, where the MIP
solver outperforms each of the ObjFun_Largest_Mean, ObjFun_Largest_Max and
Draft_FirstFail_Max search strategies, but is still outperformed by all the other CP
approaches.
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Problem CP MIP
Mixed_Wide 10 (3.17) 8 (39.1)

OneWay_Wide 10 (0.45) 9 (41.8)
Mixed_Narrow 10 (7.99) 8 (11.4)

OneWay_Narrow 8 (42.5) 7 (11.4)
Mixed_Wide_Tugs 10 (115) 6 (180)

OneWay_Wide_Tugs 8 (1.76) 8 (273)
Mixed_Narrow_Tugs 8 (4.06) 6 (126)

OneWay_Narrow_Tugs 6 (10.3) 5 (7.66)

Table 4.8: Largest problem solved, with solution time in seconds for MIP vs CP.

Table 4.8 shows that CP with a good choice of search strategy was able to solve
larger problem sizes to optimality within the cutoff time for almost all problem types,
and was the fastest to solve all problems. The MIP solver was particularly slow for
Mixed problems with tugs, possibly indicating that the tug constraints for Scenario
4 – an incoming ship followed by an outgoing ship, which occurs only in Mixed

problem types – were particularly inefficient in the MIP implementation.
One possible reason for the CP solver being faster than the MIP solver for this set

of problems is that the Draft and ObjFun search strategies allow large areas of the
search space to be eliminated quickly by the finite domain solver. The search strategy
chosen by the MIP solver may be less efficient.

While the specific MIP solver considered in this chapter resulted in much longer
CPU times than the CP solver, the use of MIP for solving this scheduling prob-
lem may be worth investigating further. In particular, there may be ways to im-
prove the constraints used in the MIP model to make them more efficient. Other
solvers (Gecode, CPLEX and Gurobi) were also explored briefly, and though calcu-
lation times varied, the overall picture was similar, namely that the fastest CP solver
(Gecode) with a good choice of search strategy was still faster to solve most problems
than the fastest MIP solver (CPLEX).

4.4 Improvements to the Constraint Programming Model

Earlier sections showed that user-defined search strategies had a significant impact
on the time taken for a solver to prove optimality for this problem, and that the choice
of model and solver also significantly affected the calculation time. This section
investigates the impact of CP modelling approaches on solver calculation time by
comparing several modifications the CP model that may make it faster to solve.

The calculation times presented in this chapter are quite implementation-specific
for the G12 finite domain CP solver; however, the more general issue is that solver
implementation, user-defined search strategies, as well as the CP modelling approach
all affect calculation time. The interaction between these factors needs to be taken into
account when designing CP models, choosing solvers, and selecting search strategies.
Also, G12 as a product can benefit from the experience gained as a result of this
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investigation into its effectiveness for this problem, and several improvements to G12
are suggested at the end of this section.

4.4.1 Sequence Variables and Time Search

The results in Section 4.2 showed that searching on draft or on the objective function
component of each ship finds optimal solutions faster than searching directly on
time. However, since the draft and objective function component can have the same
value for multiple time slots, the exact time for each ship still needs to be determined
after the draft or objective function component have been decided. As a result, it is
worth investigating several search strategies on time in more detail.

This subsection investigates the effects of the variable selection and domain re-
duction methods on calculation time when searching on time as a second search step,
after first including all ships in the schedule, and searching on draft or objective func-
tion component.

Two variable selection methods are compared with a search strategy that searches
directly on the time variables for each ship – Smallest, which chooses the variable
with the smallest lower bound, ie. the ship which has the earliest allowable sailing
time; and FirstFail, which chooses the variable with the smallest time domain.

An alternative method of searching on time – SeqVar – is also investigated. This
approach extends the CP model for the BPCTOP with redundant sequence variables
specifying ordering between every pair of vessels in the schedule. The SeqVar search
strategy searches on these variables first, prior to setting the exact sailing time for
each ship. This modification investigates whether setting the order in which ships
sail prior to choosing the exact sailing times would reduce the search, and thus speed
up the time required to find an optimal solution.

New Variables
The following new variables and constraints specify the modified CP model for the

BPCTOP with redundant sequence variables specifying the ordering between every
pair of vessels in the schedule. This modification required the addition of a new set
of dependent variables to the original CP model presented in Chapter 3, as well as
the modification of several constraints.

sb(vi, vj) ∈ [0, 1] – SailsBefore(vi, vj) – is a binary variable which is set to 1 if the
vessel vi sails earlier than the vessel vj, ie. if T(vi) < T(vj), and 0 otherwise.

Sequence Variable Constraints

sb(vi, vj) = 1↔ T(vi) < T(vj), ∀ vi, vj ∈ V; vi 6= vj (4.10)

sb(vi, vj) = 1↔ sb(vj, vi) = 0, ∀ vi, vj ∈ V; vi 6= vj (4.11)

sb(vi, vi) = 0, ∀ vi ∈ V (4.12)

The constraints in Equations (6.16), (4.11) and (6.19) define the values of the se-
quence variables sb(vi, vj) introduced above.
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Problem FirstFail_Min Smallest_Min SeqVars

Mixed_Wide 10 (5.48) 10 (1.53) 10 (2.09)
OneWay_Wide 10 (1.22) 10 (108) 10 (30.7)

Mixed_Narrow 9 (292) 8 (80.5) 9 (298)
OneWay_Narrow 8 (75.5) 8 (203) 8 (57.9)
Mixed_Wide_Tugs 10 (219) 10 (9.83) 10 (14.1)

OneWay_Wide_Tugs 8 (1.76) 8 (1.76) 8 (14.4)
Mixed_Narrow_Tugs 8 (138) 8 (139) 8 (137)

OneWay_Narrow_Tugs 6 (20.8) 6 (21.2) 6(13.0)

Table 4.9: Search strategies on the time dimension - largest problem solved, with
CPU times in seconds.

Equation (6.16) specifies that the vessel vi "sails before" vj if the scheduled sailing
time T(vi) for vi is earlier than the scheduled sailing time T(vj) for vj.

Equation (4.11) requires that if vessel vi "sails before" vj, then vj cannot sail before
vi, and Equation (6.19) specifies that no vessel can sail before itself.

Separation Time Constraints

s(vi) = 1 ∧ s(vj) = 1⇒ (4.13)

(sb(vi, vj) = 1⇒ T(vj)− T(vi) ≥ ST(vi, vj)),

∀ vi, vj ∈ V

The separation time constraints originally introduced in Chapter 3 are modified
to depend on the "sails before" sequence variables sb(vi, vj). The modified constraints
above represent the requirement that for each pair of ships vi, vj, either vi sails first
(sb(vi, vj) = 1), followed by vj with a minimum separation time ST(vi, vj) between
their scheduled sailing times, or vj sails first (sb(vj, vi) = 1), followed by vi with a
minimum separation time ST(vj, vi) between them.

Experimental Results
The same set of problems as in section 4.2 were solved with each of the FirstFail,

Smallest and SeqVars variable selection strategies. These time search strategies
were all applied after the Draft search strategy with Largest variable selection and
Max domain reduction. As in earlier sections, all calculations were run with a 300-
second cutoff time.

Table 4.9 presents the largest problem that could be solved to optimality within
the 300-second cutoff time by each variable selection strategy, for each problem type
with and without tugs, with the corresponding CPU time in seconds. Table 4.9
shows that the Smallest_Min search strategy was fastest for the least constrained
problems – Mixed_Wide with and without tugs. This is not surprising, since select-
ing the earliest allowable sailing time will find a solution quickly when the problem
is underconstrained.
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However, for the more tightly constrained problem sets – OneWay_Wide and
Mixed_Narrow with and without tugs – FirstFail_Min was the fastest search strat-
egy. For the most tightly constrained problems – OneWay_Narrow with and with-
out tugs – the sequence variable model and SeqVars search strategy resulted in the
fastest solution times.

One possible reason for this behaviour is that the added complexity of the addi-
tional variables used in the sequence variable model slows down calculation times
for the underconstrained problems; however, for over-constrained problems, larger
areas of the problem domain can be cut out by searching on sequence variables be-
fore searching on time. This speedup in search is only an effective tradeoff for the
most tightly constrained OneWay_Narrow problem type.

4.4.2 Other Improvements

Other improvements to the CP model were also investigated. One variation to the
CP model which was effective in speeding up the calculation time, particularly for
the model with sequence variables, was to convert multi-dimensional array lookups
with a variable index to use one-dimensional arrays instead. The objective function
uses the term D(v, T(v)), where v is a constant and T(v) is a variable. Constraints
on variables which index into multi-dimensional arrays are inefficiently handled in
MiniZinc, since this type of constraint is implemented using an element constraint
with a flattened array as well as a second constraint which models the relationship
between the indices of the multi-dimensional array and the index of the flattened ar-
ray. Pruning on the value of the array lookup gives little information about the values
of the original index variables. A better model is achieved by replacing D(v, T(v))
with D′v(T(v)) where D′v is the projection of D on v, since a one-dimensional array
lookup is implemented with only an element constraint, so pruning the value of the
array lookup gives maximal information about the index variables1.

Another modification that improved calculation time was sorting ships into as-
cending order of maximum objective function component maxt∈[1..Tmax ] D(v, t) · C(v),
where D(v, t) is the maximum allowable draft for vessel v at time t, and C(v) is
the tonnage per centimetre of draft for vessel v. This improved the efficiency of the
search slightly, as it allowed sailing times to be searched in order of ship size. Sorting
the array of ships is required as a workaround, since MiniZinc does not implement
a user-defined search strategy which sorts one variable by another variable with the
same index. Sorting is thus a proxy for a more complex user-defined variable order-
ing heuristic.

Experimental Results
The modified CP models were compared against the original model introduced in

Chapter 3, with the same set of example problems as used for earlier experiments.

1Note: the implementation of multi-dimensional array lookups with variable indices has been
changed in the latest version of MiniZinc.
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Problem Old OneDim Sort OneDimSort

Mixed_Wide 10 (3.17) 10 (0.22) 10 (1.00) 10 (0.56)
OneWay_Wide 10 (0.45) 10 (2.62) 10 (0.56) 10 (0.34)

Mixed_Narrow 10 (7.99) 10 (0.22) 10 (8.30) 10 (0.56)
OneWay_Narrow 8 (42.5) 10 (190) 8 (37.1) 10 (157)
Mixed_Wide_Tugs 10 (115) 10 (14.3) 10 (124) 10 (19.4)

OneWay_Wide_Tugs 8 (1.76) 9 (124) 8 (2.09) 9 (100)
Mixed_Narrow_Tugs 8 (4.06) 10 (166) 8 (4.16) 10 (121)

OneWay_Narrow_Tugs 6 (10.3) 9 (228) 6 (7.75) 9 (211)

Table 4.10: Comparison of original vs modified CP models - largest problem solved,
with CPU time in seconds.

The original CP model was tested with the fastest search strategy as found in Sec-
tion 4.2 – Draft_Largest_Mean. The improved CP models were tested with the
search strategies that were fastest for each model, as investigated further in this sec-
tion.

The results of these comparisons are shown in Table 4.10. The CP model with
one-dimensional arrays performed significantly better than the fastest original CP
model for all problem types, successfully solving problems with an average of 2 more
ships than the original CP model. The CP model with sorted ships only resulted
in a very small improvement on the calculation times of the original CP model,
and in some cases resulted in slower calculation time. However, when combined
with one-dimensional arrays, sorting the ships resulted in faster calculation times for
the most difficult problem types – OneWay_Narrow with and without tugs, and
Mixed_Narrow and OneWay_Wide with tugs.

4.4.3 Search Strategies for the Improved CP Model

A number of search strategies were also compared for the modified CP models, to
test whether the modifications affected which search strategies were able to find
optimal solutions fastest. The search strategies compared in this section include:

1. DraftFF – Searching on draft first, with the FirstFail variable selection strat-
egy and Mean domain reduction.

2. DraftLargest – Searching on draft first, with the Largest variable selection
strategy and Mean domain reduction.

3. ObjFF – Searching on objective function first, with the FirstFail variable selec-
tion strategy and Mean domain reduction.

4. ObjLargest – Searching on objective function first, with the Largest variable
selection strategy and Mean domain reduction.

5. SeqVarsFirst – Searching on sequence variables first, followed by Draft with
the Largest variable selection strategy and Mean domain reduction.
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Problem DraftFF DraftLargest ObjFF ObjLargest SeqVarsFirst

MW 10 (0.55) 10 (0.45) 10 (0.44) 10 (0.44) 10 (0.56)
OW 10 (0.34) 10 (0.33) 10 (0.33) 10 (0.33) 10 (0.34)
MN 10 (0.34) 10 (0.33) 10 (0.33) 10 (0.33) 10 (0.56)
ON 8 (23.0) 8 (22.8) 8 (29.4) 8 (17.9) 10 (157)

MWT 10 (50.7) 10 (50.7) 10 (51.5) 10 (50.9) 10 (19.4)
OWT 8 (0.89) 8 (0.89) 8 (0.89) 9 (262) 9 (100)
MNT 9 (277) 9 (40.1) 9 (84.0) 8 (1.33) 10 (121)
ONT 7 (138) 7 (119) 7 (171) 7 (132) 9 (211)

Table 4.11: Comparison of search strategies for the CP model with all three improve-
ments.

Problem DraftLMean SeqVarsFirst

MW 10 (0.22) 10 (0.22)
OW 10 (2.40) 10 (2.62)
MN 10 (0.22) 10 (0.22)
ON 8 (18.4) 10 (190)

MWT 10 (48.8) 10 (14.3)
OWT 8 (1.43) 9 (124)
MNT 9 (27.8) 10 (166)
ONT 7 (98.3) 9 (228)

Table 4.12: Searching by draft vs sequence variables for improved model with one-
dimensional arrays only.

All of the DraftFF, DraftLargest, ObjFF and ObjLargest search strategies also
searched on sequence variables as a second search step.

Improved Model with One-Dimensional Arrays and Sorted Inputs
Table 4.11 shows the largest problem solved and corresponding CPU time in sec-

onds for each of these five search strategies using the CP model with all three im-
provements: sequence variables, one-dimensional arrays and sorted inputs. The Seq-
VarsFirst search strategy was significantly faster than all the other search strategies
on all the most difficult problems, successfully solving larger problem sizes for all
problems with tugs, as well as for the most difficult OneWay_Narrow problem
without tugs.

When the problem is expressed with one-dimensional arrays and sorted inputs,
searching on sequence variables first is faster than searching on draft first. Tables 4.12
and 4.13 show that this effect is repeated for one-dimensional arrays only, but not
for sorted inputs only. This implies that sequence variable constraints in particular
propagate better when expressed with one-dimensional arrays, rather than as multi-
dimensional array lookups with a variable index.
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Problem DraftLMean SeqVarsFirst

MW 10 (1.00) 8 (179)
OW 10 (0.56) 8 (136)
MN 10 (8.30) 8 (54.5)
ON 8 (37.1) 9 (204)

MWT 10 (124) 7 (9.83)
OWT 8 (2.09) 8 (257)
MNT 8 (4.16) 7 (21.9)
ONT 6 (7.75) 8 (282)

Table 4.13: Searching by draft vs sequence variables for improved model with sorted
ships only.

Improved Model with One-Dimensional Arrays Only
Table 4.12 shows the largest problem solved and corresponding CPU time for the

two search strategies that were tested with one-dimensional arrays only. As for the
improved model with both one-dimensional arrays and sorted inputs, searching on
sequence variables first allows larger problem sizes to be solved for the most complex
problems.

Improved Model with Sorted Inputs Only
Table 4.13 shows the largest problem solved and corresponding CPU time for the

two search strategies that were tested with sorted inputs only. For sorted inputs
only, searching on sequence variables first results in slower calculation times for
most problems. Sequence variable search is also only able to solve problems that are
1-2 ships smaller than the largest problems solved by draft search for most problem
types, with the exception of OneWay_Narrow problems, where sequence variable
search is able to find solutions for larger problem sizes.

For all search strategies, the improved model with sorted inputs only always per-
forms worse than the improved model with one-dimensional arrays, or the improved
model with both one-dimensional arrays and sorted inputs.

Discussion Improvements to the CP model were found to improve calculation
speed significantly, and were much more effective than any of the small improve-
ments produced by the draft and objective function search strategies investigated in
Section 4.2.2. In particular, expressing multi-dimensional array lookups with a vari-
able index as one-dimensional arrays provided the most significant improvements,
particularly when combined with sequence variable search. These improvements
both arose from the implementation details and limitations of the G12 finite domain
solver, showing that solver implementation has a significant impact on what mod-
elling approaches and search strategies are most effective for a particular problem.

Chapter 3 discussed aspects of the CP model that led to improved calculation
time, such as the approach of splitting the tug constraints into four scenarios. These
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improvements to the model were highly problem-dependent, and could only be iden-
tified by a human; however, converting multi-dimensional arrays to one-dimensional
arrays is a more mechanical feature of a CP model, which can be built into a CP solver
or modelling language. Automatically translating multi-dimensional array lookups
to one-dimensional arrays may therefore be worth investigating as a potential im-
provement to the MiniZinc modelling language and the G12 system.

Sorting the inputs prior to solving the model also improved calculation time.
This has more general implications for other CP problems – any precomputation of
inputs, such as sorting inputs for easier search, may result in improved calculation
speed.

Precomputation of inputs was also used in the basic ship scheduling constraints
introduced in Chapter 3. The asymmetric separation times between ships originate
from symmetric separation times between ships at waypoints (usually narrow or
shallow points) along the channel. An early version of the CP model presented in
Chapter 3 defined several waypoints with a fixed separation time at each waypoint,
and distances between berths and waypoints along the channel.

However, solving this subproblem every time the separation time constraints
needed to be evaluated significantly increased the time required to find optimal
schedules. Precomputing separation times between every pair of ships could be
done easily by an external script, and resulted in significantly faster runtimes for the
CP solver than modelling separation times separately at a series of waypoints along
a channel.

This suggests a possible improvement to the G12 optimisation system or other
CP solvers: automatically identifying easily solvable subproblems which could be
precomputed for every possible combination of inputs rather than being solved re-
peatedly as part of the optimisation process. If the process of finding subproblems
for precomputation can be automated, many other problems are likely to benefit
from the increase in calculation speed, and this will significantly reduce the amount
of work required for human experts in identifying such subproblems manually.

4.5 Benders Decomposition

The results presented in Sections 4.2 to 4.4 show that the addition of tug constraints
significantly increases the difficulty of this ship scheduling problem. For all problems
and search strategies investigated in this chapter, the addition of tug constraints re-
duced the largest problem size that could be solved within the cutoff time by around
2 ships on average.

The tug constraints are clearly the hardest part of the problem; however, the
scheduling problem can be solved with or without tug constraints. This leads to
the possibility of speeding up the solution time of large scheduling problems by
decomposing the problem into scheduling and tug availability subproblems.

Benders decomposition, first introduced by Benders [1962], as discussed in Chap-
ter 2, is a commonly used method for decomposing hard linear programming prob-
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lems into a master and subproblem which are smaller and more tractable than the
combined problem. The problems are then solved iteratively, with the master prob-
lem providing a bound on optimal solution quality, and the subproblem providing
cuts that are used to remove infeasible areas of the master problem domain from the
search. Logic-based Benders decomposition is an extension of the original Benders
decomposition method to CP problems [Hooker and Ottosson, 2003]. This seems a
suitable way to apply Benders decomposition to the BPCTOP, since CP was found to
be more effective than MIP for the BPCTOP in Section 4.3.

In logic-based Benders decomposition, the master problem generates a candidate
solution which is used as a bound on the optimal solution quality. The subproblem
is then used to generate cuts – new constraints – which are added to the master
problem for future iterations.

Efficient logic-based Benders cuts for scheduling problems have been investigated
for a number of objective functions, such as minimum makespan and minimum total
tardiness. However, the time-varying value objective function of the BPCTOP does
not fit into any of these categories, so new Benders cuts need to be identified for this
model.

This section presents an initial approach to a logic-based Benders decomposi-
tion model of the Bulk Port Cargo Throughput Optimisation Problem, with the ship
scheduling problem as the master problem and constraints on tugs (Equations (3.7) to
(3.13)) as the subproblem. For any time slots where the tug constraints are breached
in the subproblem, the tug constraints are then added back into the master problem
in the next iteration. We call this the tug cuts approach, to differentiate it from the al-
ternative approach with a different set of Benders cuts (separation time cuts) presented
later in Section 4.5.3. The performance of both CP and MIP models for the master
and subproblem are compared using the same problem set as earlier in this chapter.

4.5.1 Benders CP and MIP Models

To implement the tug cuts Benders decomposition approach, the CP model for the
BPCTOP had to be split into two halves – a ship scheduling master problem and tug
constraints subproblem.

Master Problem
The master problem contained all the constraints and variables introduced in

Chapter 3, without tugs. After the first iteration, tug constraints get added back
in, but only for time points where these constraints were breached in the subprob-
lem. This requires the addition of two new parameters in the tug constraints – Tstart

and Tend – which specify the range of time points where the tug constraints need to
be applied.

All the tug constraints that apply for all times t ∈ [1, Tmax] are modified in the
Benders master problem to apply for t ∈ [Tstart, Tend] instead. These include the
constraints presented in equations (3.7) to (3.13) in Chapter 3.
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Subproblem
Output of Master Problem – The output of the master problem is a schedule which

specifies whether each vessel vi is included in the schedule – s(vi) – as well as sched-
uled sailing time T(vi) for each ship. These outputs are then used to set the values of
the corresponding variables in the subproblem, for validation of the constraints on
tugs.

Variables – The subproblem has a new boolean decision variable a(t) which is true
if the tug availability constraints can apply for time t ∈ [1, Tmax], and false if the tug
availability constraints were breached for the given schedule at time t.

Constraints – The subproblem only contains the constraints on tugs; all other
constraints are left out of the subproblem, as the solution to the master problem will
already satisfy all those constraints.

The tug availability constraints introduced in Equations (3.12) and (3.13) in Chap-
ter 3 are modified in the subproblem to only hold for time points when tug con-
straints apply, ie. a(t) is true. The modified tug availability constraints are shown
below.

∑
v∈I

∑
g∈G(v)

U(v, t, g) ≤ Umax∧ (4.14)

∑
vo∈O

∑
g∈G(vo)

U(vo, t, g) + ∑
vi∈I

X(vi, t) ≤ Umax

→ a(t) = 1, ∀ t ∈ [1, Tmax]

∑
v∈I

∑
g∈G(v)

U(v, t, g) > Umax → a(t) = 0, ∀ t ∈ [1, Tmax] (4.15)

∑
vo∈O

∑
g∈G(vo)

U(vo, t, g) + ∑
vi∈I

X(vi, t) > Umax → a(t) = 0, ∀ t ∈ [1, Tmax] (4.16)

Equation (4.14) specifies that if the total number of tugs used for both incoming
and outgoing ships at time t is less than or equal to the total number of tugs Umax

available at the port, then tug constraints apply and a(t) must be true (1).
Equations (4.15) and (4.16) specify that if the number of tugs used for either

incoming or outgoing ships at time t is greater than the total number of tugs Umax

available at the port, then the tug constraints are breached at time t, and a(t) is false
(0).

Objective Function – The objective for the subproblem, given by Equation (4.17),
maximises the total number of time slots when the tug constraints apply.

max ∑
t∈[1,Tmax ]

a(t) (4.17)

Output – The result of the subproblem is the list of times when tug constraints
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Problem BendersCP BendersMIP Comb.
MWT 9 (15.9) 7 (16.6) 10 (115)
OWT 8 (16.3) 7 (22.3) 8 (1.75)
MNT 8 (2.98) 7 (200) 8 (4.06)
ONT 6 (6.58) 5 (5.15) 6 (10.3)

Table 4.14: Benders CP and MIP models vs. combined CP model – largest problem
solved for each type, with corresponding CPU time in seconds.

Problem MP_CP MP_MIP SP_CP SP_MIP
MWT_7 0.67 16.0 0.89 0.67
OWT_7 1.42 1.64 0.67 0.45
MNT_7 0.45 194 0.87 0.67
ONT_5 0.55 1.97 0.55 0.44

Table 4.15: MIP vs CP models for the Benders Master and Subproblems – CPU times
for the final iteration in seconds.

were breached, which is then passed into the master problem to add back the tug
constraints for the range of times where tug constraints were breached.

Benders MIP Model The MIP model introduced in Section 4.3 also required mod-
ification to be converted into a master and subproblem for Benders decomposition.
These modifications are all identical to those required for the CP model above.

4.5.2 Experimental Results

MiniZinc and G12 do not yet support Benders decomposition, so the iteration be-
tween master and subproblem was implemented externally via a Python script. The
Benders CP and MIP implementations were tested with the same set of example
problems as used for tests in earlier sections of this chapter; however, only the prob-
lems with tug constraints were used, as the subproblem would not exist for any
problem without tugs.

Table 4.14 shows the largest problem solved for each problem type using the
Benders CP and MIP implementations, as well as a combined CP model, with the
corresponding CPU time. Table 4.15 shows the calculation time for MIP and CP for
the Benders master or subproblem in the final iteration of the largest problem to be
solved by both MIP and CP. This allows the calculation speed to be compared for
the master and subproblem individually. The search strategy used for the Benders
Master problem was the search strategy found to be the fastest for the combined
problem – Draft_Largest_Mean.

Table 4.14 shows that, as with the combined problem, CP outperforms MIP for
every problem type. However, looking at the master and subproblem individually,
MIP was always faster for the subproblem, even though CP was always faster for the
master problem. Even though the subproblem CPU times are small compared to the
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master problem, a combined approach using CP for the master problem and MIP for
the subproblem would result in slightly faster calculation times than either a pure
MIP or pure CP approach.

The Benders tug cuts approach provides a simple way to validate that Benders
decomposition can be used to decompose the scheduling and tug availability prob-
lems. However, the results in Table 4.14 show that this approach is quite inefficient –
the Benders approach did not solve any larger problems than the combined model.
The Benders model provided a small speed improvement for two problem types, but
was slower than the combined model for the other two.

The likely reason for this is that the tug cuts approach is quite inefficient, since
the tug constraints get added back to the master problem at exactly the most tightly
constrained times in the schedule. This means that the later iterations of the master
problem are almost as slow as solving the combined problem.

However, this was only the first, simplest attempt at implementing Benders de-
composition for this problem. Simpler, more efficient Benders cuts may result in
much faster calculation times, possibly improving on the combined problem results.

4.5.3 Alternative Benders Cuts

An alternative set of logic-based Benders cuts was implemented, to investigate the
performance of simpler cuts which have shorter calculation time, but which may
require more iteration.

Similarly to the previous simple Benders approach, ships are scheduled in the
master problem and constraints on tugs are checked in the subproblem. However,
if the tug constraints are breached in the subproblem, a different set of cuts – new
constraints – is added to the master problem. These new cuts specify that for ships
involved in breaching the tug constraints, either their sailing order must change, or
the sum of the separation times between ships must increase. We refer to this as the
separation time cuts approach.

The separation time cuts approach never cuts out any valid solutions, since if the
tug constraints are breached for a given set of ships with a given set of scheduled
sailing times, then the tug constraints will still be breached in any schedule with an
equal or smaller sum of separation times between those ships, and with the same
sailing order.

The separation time cuts also ensure that the successive iterations of the Benders
master problem will eventually find a solution that satisfies the tug constraints if one
exists, since the increase in separation times will eventually push any set of ships
that breach the tug constraints further apart, until enough tugs are available at each
point in time.

4.5.4 New Benders CP Model

The subproblem uses the same CP model as presented in Section 4.5.1.
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The CP model for the master problem no longer includes any constraints on tugs
at all. The master problem model contains all constraints from the original CP model
presented in Chapter 3 without tugs, with the following additional parameters and
constraints.

Parameters
Nc defines the number of separation time cuts added to the original master prob-

lem.
Nv(c) is the number of ships that contributed to the breach of tug constraints,

and therefore that are involved in the separation time cut c.
O(c, v) defines the ordering of vessels v ∈ [1, Nv(c)] that led to a breach of tug

constraints, and that therefore must be avoided in separation time cut c.
STmin is a lower bound on the sum of the separation times between the ships

listed in O(c, v).
The values of the above parameters are set from the results of each iteration of

the subproblem. Nc increases by 1 after each iteration, since all previous cuts still
need to be applied. The results of the subproblem allow the ships that contributed
to the tug constraint breach to be identified, as all ships which sailed during or
before the tug constraint breach – Tstart to Tend introduced in Section 4.5.1 – and
for which at least some tugs had not yet become available for their next job at the
start of the tug constraint breach, ie. the tug turnaround time r(v, g) had not yet
passed. Ships contributing to the tug constraint breach are those vessels v that satisfy
Equation (4.18), below.

T(v) ≤ Tend ∧ T(v) + max
g∈G(v)

r(v, g) > Tstart (4.18)

Constraints
The master problem with separation time cuts requires the addition of the follow-

ing new constraints.

∑
v∈[1,Nv(c)]

(T(O(c, v))− Tearliest) > STmin∨ (4.19)

∃ v1, v2 ∈ [1, Nv(c)] s.t.

v1 < v2 ∧ T(O(c, v2)) < T(O(c, v1))

∀ c ∈ [1, Nc]

where

Tearliest = min
v∈[1,Nv(c)]

T(O(c, v)) (4.20)

The constraints in Equations (4.19) and (4.20) specify that for every separation
time cut c added to the master problem, the vessels v ∈ [1, Nv(c)] that contributed
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Problem TugsCP SepTime Combined

MWT 9 (15.9) 8 (10.6) 10 (115)
OWT 8 (16.3) 7 (54.8) 8 (1.75)
MNT 8 (2.98) 8 (10.6) 8 (4.06)
ONT 6 (6.58) 5 (16.9) 6 (10.3)

Table 4.16: Benders approach with separation time cuts vs. tug cuts and the com-
bined CP problem – CPU time in seconds.

No. Iterations Calc Time
Problem Tugs SepTime Tugs SepTime

MWT_8 2 10 1.11 1.22
OWT_7 3 43 1.44 0.76
MNT_8 2 10 0.56 0.55
ONT_5 3 23 0.44 0.33

Table 4.17: Number of iterations and CPU times in seconds for the final iteration
of the master problem for the largest problem solved by Benders with tug cuts vs.

separation time cuts.

to the breach of the tug constraints in the previous iteration of the subproblem must
either have a larger sum of separation times than the earlier bound STmin, or must
sail in a different order from that defined by the ordering parameters O(c, v) for this
cut.

4.5.5 Experimental Results for New Approach

Table 4.16 shows that the separation time Benders cuts are much slower than the
tug cuts for every problem type, and for most problems the separation time cuts ap-
proach can only solve problems that are one ship smaller than the tug cuts approach.
The much longer CPU times are likely due to the number of iterations being much
higher for separation time cuts, as shown by Table 4.17, while the calculation time
for each iteration is not reduced significantly for those problems that can be solved
by Benders decomposition with both types of cuts.

Investigating the specific cuts that get added in each iteration for the separation
time cuts approach shows that the ships move apart very slowly, with each itera-
tion changing by only one time step, and with frequent iteration between different
orderings that do not resolve any breaches in tug constraints.

The number of iterations taken to find an optimal solution with the separation
time cuts approach can perhaps be reduced significantly by using smarter cuts that
cut out more of the problem domain in each iteration, but without becoming as
complex as adding the tug constraints back entirely. For example, the separation
time cuts defined by Equations (4.19) and (4.20) only require that the sum of the
separation times between ships be less than that for a schedule that breached the tug
constraints. However, we may be able to use a stronger bound by requiring that the
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sum of the separation times be reduced by at least the number of time steps at which
the tug constraints were breached. If the tug constraints were breached at 10 time
steps, it is clear that moving one ship by one time step will not resolve the breach.

There may be a middle ground between complex cuts which are slow for each it-
eration with larger problems, and overly simple cuts which are fast for each iteration
even with large problems, but which require too many iterations to find a solution.
However, investigation of further logic-based Benders cuts for this problem is left for
future work.

4.6 Summary

This chapter investigated a number of approaches to solving the Bulk Port Cargo
Throughput Optimisation Problem (BPCTOP) introduced in Chapter 3, including
several user-defined search strategies for the CP solver, a comparison against a new
MIP model and MIP solver, a number of improvements to the CP model that took
into account CP solver implementation details, and finally a Benders decomposition
approach. While not all approaches were effective at solving the problem quickly,
some approaches were found that significantly improved calculation time, and al-
lowed problems with 9 ships sailing on one high tide to be solved within 5 minutes
– this is 50% more than the current record of 6 ships sailing on one high tide at Port
Hedland, the world’s largest bulk export port [Port Hedland Port Authority, 2013d].

The results in this chapter showed that the choice of solver, model and search
strategy all significantly influenced the solution time for this problem, and more
importantly, that the interaction between these three factors also had a significant
effect. Some approaches to modelling the problem resulted in problem instances
being solved faster due to aspects of the model being implemented more efficiently
in the solver, and some variations to the model also changed which search strategy
was more effective. Similar results are observed for another CP model for a different
maritime transportation problem discussed in Chapter 7, so the more general result
of this chapter is that the choice of model, solver, and search strategy needs to be
considered as an interacting system, rather than in isolation.

This chapter also presents some recommendations for improvement to the G12
finite domain CP solver that arose from the efficiency investigations for the BPCTOP.
While these findings are specific to the G12 finite domain solver, other solvers may
also have similar implementation issues and may benefit from these ideas. Specif-
ically, this chapter found that multidimensional arrays were handled inefficiently
compared to one-dimensional arrays, so automatic conversion of multidimensional
arrays to one-dimensional arrays as a preprocessing step may improve performance
for some problems. Also, preprocessing of inputs, such as sorting variables or pre-
computing all possible values for a small subproblem rather than solving it repeat-
edly, was found to improve calculation speed. This may also be worth investigating
as a possible target for automation, since opportunities for preprocessing are hard
to identify manually, and require a good understanding of both the problem, and
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solver limitations.
The next chapter discusses the prototype software for scheduling ship sailing

times at a port that was implemented based on the work presented in this chapter,
and compares the quality of the solutions produced by the CP model against real
schedules created by human schedulers at Port Hedland.



Chapter 5

Real-World Impact

The CP model for the Bulk Port Cargo Throughput Optimisation Problem (BPCTOP)
presented in Chapter 3 was incorporated into a commercial ship scheduling system,
DUKC R© Optimiser, developed by OMC International. The system uses the Dynamic
Under-Keel Clearance (DUKC R©) software developed by OMC International to calcu-
late draft restrictions. These restrictions are then used as input to the CP model, and
solved using the G12 finite domain solver [Stuckey et al., 2005].

This chapter presents the prototype port optimisation system, including user in-
terface, system architecture and a discussion of improvements made in response to
user feedback. This chapter also compares the schedules produced by the system
against approaches typically used by human schedulers, as well as against a set of
real schedules created by human schedulers at Port Hedland.

5.1 The DUKC Optimiser System

5.1.1 Initial Prototype

A command-line prototype of DUKC R© Optimiser was developed and tested by port
schedulers in late 2010, and demonstrated at the International Conference on Auto-
mated Planning and Scheduling (ICAPS) 2011 [Kelareva, 2011]. An updated model
containing improvements based on user feedback was incorporated in a commer-
cial system in 2012. This system has now been commissioned and is in use at Port
Hedland. DUKC R© Optimiser won the NASSCOM Innovation Student Award for
IT-Enabled Business Innovation in 2013 [Consensus Group, 2013].

The initial prototype was command-line based, which was sufficient to gather
initial user feedback on schedule quality, but would have been inconvenient for op-
erational use. The scheduling system was therefore incorporated into a commercial
web-based dynamic under-keel clearance management system - DUKC R© Series 5,
developed by OMC International.

The initial prototype also did not include tug constraints; however, testing of
the prototype on real ship scheduling problems showed that the availability of tugs
sometimes constrained the schedule, so schedules produced by the model without
tug constraints could be infeasible in practice. Tug constraints therefore needed to
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be incorporated before the system could be used in practice, which led to the de-
velopment of the tug constraint model discussed in Chapter 3. The updated system
described in the rest of this chapter, which is now in use at Port Hedland, does
include tug constraints.

5.1.2 User Interface

To run a DUKC R© Optimiser calculation, the scheduler must enter parameters such as
length and beam for each ship that are used to calculate under-keel clearance. Other
inputs required to calculate a schedule include the earliest sailing time for each ship,
the number of tugs required for each ship, the range of drafts to calculate, and a
priority number that is used to ensure fairness to different companies using the port.

Figure 5.1 shows an output schedule for a set of six ships sailing on one tide.
In the graph on the bottom half of the screen, each bar represents a ship, with the
height of the bar corresponding to the draft that the ship is scheduled to sail with,
and the location of the bar along the x-axis indicating the time at which the ship is
scheduled to sail. Each ship is scheduled with a time slot of 15 minutes, rather than
a fixed time point, as it is impractical to expect a large bulk carrier to sail precisely
at a given minute.

The blue curve indicates the minimum water depth along the channel plus the
height of the astronomical tide prediction at that point in time. Astronomical tide is the
prediction of the tide height based on gravitational forces from the moon and sun;
this prediction does not allow for short-term variation due to weather conditions,
which can be up to 1 metre. The blue line on the graph also does not take into
account the ship’s wave response, squat and heel, as well as a conservative safety
allowance, all of which can decrease the amount of water available to the ship. This
results in the height of the blue curve being significantly above the height of the
bars indicating the scheduled draft for each ship, since the allowable sailing draft
calculation does take all of these factors into account.

The decision to show the height of the tide instead of the allowable draft was
made because each ship sails from a different berth, and responds differently to
waves and other environmental conditions, so the draft function is slightly different
for each ship. If the draft were shown instead, this would result in a more cluttered
graph with 6 similar overlapping lines, so the simpler approach of displaying the
height of the tide was chosen instead.

The shallowest point along the channel is some way out from the berths at most
ports, so the maximum draft that can be obtained for any ship occurs when a ship
starts sailing some time before the high tide. In this example, ship C is scheduled
with the highest draft, and sails about an hour before the peak of the high tide. Ships
that start sailing at high tide will reach the shallowest point of the channel when the
tide is already falling, and thus ships B and F must sail with a lower draft.
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Figure 5.2: DUKC R© Optimiser System Architecture

5.1.3 Other Features

The web-based DUKC R© Series 5 system includes a number of additional features to
assist port schedulers, pilots and harbourmasters in making ship scheduling and
sailing decisions. Port administrators may limit user permissions to only access
schedules for ships belonging to their organisation, or to only access features that
are required for their job. The system can also display live environmental data, such
as measurements from wave buoys and tide gauges. The system also includes the
DUKC R© calculations used to provide under-keel clearance advice to pilots and ship
captains immediately prior to sailing, and an in-transit monitoring tool that tracks
the locations of ships at the port.

5.1.4 System Architecture

Figure 5.2 summarises the high-level system architecture. When the scheduler selects
a set of ships to be scheduled in the web-based GUI, a query is sent to the DUKC R©

Optimiser server. Upon receiving a schedule query, DUKC R© Optimiser converts it
into a set of queries to OMC’s DUKC R© software. The DUKC R© software uses real-
time environmental forecasts and measurements to analyse each ship’s motion, and
thus to calculate the ship’s under-keel clearance – the amount of water under the
ship at each point in the transit. This produces sailing windows for a range of drafts
for each ship.

DUKC R© Optimiser then converts the user inputs and the results of the DUKC R©

calculations into the input data required for the Constraint Programming (CP) model
introduced in Chapter 3. The model is specified in the MiniZinc optimisation lan-
guage [Nethercote et al., 2007] and solved using the G12 finite domain solver [Stuckey
et al., 2005]. The DUKC R© Optimiser GUI then displays the resulting schedule.
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5.2 Schedule Quality Analysis

This section presents comparisons of schedules produced by our model for the BPC-
TOP against fixed-draft approaches typically used in academia, as well as some typ-
ical heuristics used by human schedulers at ports. This section compares these ap-
proaches on some simple examples, to illustrate why common heuristics may fail
to find optimal solutions even for small problem sizes with only 3 ships. The next
section presents a more extensive comparison of our approach against a data set of 2
months’ worth of real schedules created by human schedulers at Port Hedland.

5.2.1 Comparison Against Fixed Draft

In existing ship scheduling and routing problems, draft restrictions are generally
considered as fixed constant maximum drafts, for example Christiansen et al. [2011];
Korsvik, Fagerholt, and Laporte [2010]; Bausch, Brown, and Ronen [1998]. Fixed-
time draft restrictions produce good schedules for problems with small (ie non-draft-
restricted) ships, or for non-tidal ports. However, the majority of the world’s sea
ports are affected by tides, which will cause the draft restrictions at the port to vary
with time. For ports that use time-varying draft restrictions, scheduling draft-limited
ships using fixed-time draft restrictions can result in sub-optimal schedules.

Figure 5.3 shows one example of a schedule with three ships sailing on a tide,
with time-varying or fixed-time draft restrictions. The actual, time-varying, draft
restrictions used at the port will allow ship A to sail with 18.1m draft, as shown in
Figure 5.3(a). A scheduling algorithm with fixed constant draft restrictions, on the
other hand, has to set the draft restriction low enough to ensure that all ships will
be able to sail with this draft. This results in all three ships A, B and C sailing with
18.0m draft, as shown in Figure 5.3(b).

Assuming that all ships can carry 130 tonnes of cargo per centimetre of additional
draft, as is the average for iron ore bulk carriers at Port Hedland [Port Hedland Port
Authority, 2011b], the sub-optimal fixed-draft schedule shown in Figure 5.3(b) will
result in 1300 tonnes less iron ore being carried on this set of ships. This is around
US$175,500 less iron ore, at the January – July 2013 average iron ore price of around
US$135/tonne [Index Mundi, 2013]. Note that all cost and revenue figures in this
thesis are given in US dollars unless stated otherwise, which was close to parity with
the Australian dollar at the time of writing.

Around 1300 ships sailed from Port Hedland in the 2009-10 financial year [Port
Hedland Port Authority, 2011a]. A 10cm reduction in draft of every 3rd ship will
result in 563Kt less iron ore being shipped on the same set of ships over the course of
a year, or around US$76 million less iron ore per year. Given that a typical iron ore
bulk carrier can transport 170,000 tonnes of iron ore [Port Hedland Port Authority,
2011a], this results in 3.3 extra voyages needing to be made per year.

In reality, using fixed constant draft restrictions may have an even larger reduction
in draft for some ships, since the height of each tide is not constant throughout the
year, but varies with the spring-neap tidal cycle by as much as several metres. Any
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Figure 5.3: Schedule with time-varying draft vs. constant draft.
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scheduling approach which uses fixed-time draft restrictions would have to set the
draft restriction to a value that is low enough to allow ships to sail even at neap tides,
thus reducing the draft of ships sailing at higher tides even further.

This shows that even though constant draft restrictions are good enough for
scheduling small non-draft-restricted ships, or for scheduling at non-tidal ports,
problems involving large draft-restricted ships sailing through tidally-affected ports
have a high potential for improvement in schedule quality by incorporating time-
varying draft restrictions.

As seen in Chapter 4, incorporating time-varying draft restrictions significantly
increases the complexity of a ship scheduling problem; so much so that finding op-
timal schedules is a non-trivial problem even for ships sailing from a single port.
Larger problems may be solvable efficiently by using a decomposition approach, for
example, first assigning ships to tides with a fixed constant draft for each tide, then
optimising the schedule for each tide individually to maximise drafts more accurately
for that set of ships. Other non-optimal heuristic approaches may also be used, as in
Chapter 6, which investigates the much larger ship routing and scheduling problem
with time-varying draft restrictions and speed optimisation.

5.2.2 Comparison Against Manual Scheduling

The schedules produced by solving the Bulk Port Cargo Throughput Optimisation
Problem can be compared against schedules produced by simple manual optimisa-
tion algorithms similar to those typically used by human schedulers. One algorithm
that can be used for manual scheduling is to schedule the ship that has the highest
weighting in the objective function first (ie. the ship with the highest tonnage per
centimetre of draft, or the highest priority for more complex priority queue-based
objective functions), and to schedule each ship at the earliest time it can sail with
its highest possible draft. This manual scheduling algorithm will be referred to as
ObjFunFirst.

Note: each ship to be scheduled has a maximum draft it can be loaded to, which
may depend on the structural engineering of the ship, and at some ports may be
constrained by the amount of cargo available for transport. The maximum draft for
each ship may be below the maximum draft that would be allowed by the under-keel
clearance rule at the peak of the tide, in which case the draft equation D(v, t) for the
ship will have a plateau at the peak of the tide.

5.2.2.1 ObjFunFirst vs Optimal Scheduling

In some situations, the ObjFunFirst algorithm may produce suboptimal schedules,
where ships carry less cargo in total. Figure 5.4 shows one example problem where
ObjFunFirst scheduling results in less cargo being carried by ship D.

Figure 5.4 shows a simple example schedule with four outgoing ships A to D,
having maximum drafts of 18.1, 18.0, 17.9. and 17.8 metres respectively. The tonnage
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Figure 5.4: Manual schedule using ObjFunFirst vs optimal schedule.
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per centimetre of draft is 130, 140, 125 and 120 respectively. (The average for iron
ore bulk carriers at Port Hedland is 130 tonnes of cargo per centimetre of draft [Port
Hedland Port Authority, 2011b]). The sailing windows at their respective maximum
drafts are 12:00–12:40 for ship A, 11:50–12:50 for ship B, 11:40–13:00 for ship C, and
11:30–13:10 for ship D. For simplicity, we assume that the separation time between
each pair of ships is 30 minutes, regardless of order.

The ObjFunFirst algorithm will schedule ship B first, as it has the highest ton-
nage per centimetre of draft. Ship B will be scheduled to sail at its earliest possible
time when it can get its maximum draft, that is, 11:50. Ship A will be scheduled
next, sailing at 12:20. Ship C will be scheduled next, sailing at 12:50. The 30-minute
separation requirement now does not allow ship D to sail with its maximum draft,
either at the start or end of the schedule. Ship D will have to sail 10 minutes before
or 10 minutes after it can get its maximum draft. This sub-optimal schedule is shown
in Figure 5.4(a).

Optimal scheduling, on the other hand, finds a solution that will allow all ships
to sail with their maximum drafts, scheduling ship A to sail at 12:00, B at 12:30, C at
13:00, and D at 11:30, as shown in Figure 5.4(b).

5.2.2.2 MaxDraftFirst vs Optimal Scheduling

Another algorithm that could be used for manual scheduling is to schedule the ship
with the highest allowable draft first (referred to in this chapter as MaxDraftFirst.
In the example shown in Figure 5.4, MaxDraftFirst would have found the opti-
mal schedule. However, there are other example problems where MaxDraftFirst

scheduling would result in suboptimal schedules. One such example is shown in
Figure 5.5.

Figure 5.5 shows an example schedule with three outgoing ships A to C, having
maximum drafts of 18.1m for ship A, and 18.0m for ships B and C. The sailing
windows at their respective maximum drafts are 12:00 - 12:40 for ship A, and 11:50 -
12:50 for ships B and C. As for the earlier example shown in Figure 5.4, we assume
that the separation time between each pair of ships is 30 minutes, regardless of order.

The MaxDraftFirst algorithm will schedule ship A first, as it has the highest
maximum draft. Ship A will be scheduled to sail at the earliest possible time when
it can get its maximum draft, that is, 12:00. Ship B will then be scheduled to sail
at 12:30, resulting in Ship C having to sail at 13:00, 10 minutes outside the time
range when it can get its maximum draft. This sub-optimal schedule is shown in
Figure 5.5(b).

Optimal scheduling, on the other hand, finds a solution that has Ship A sailing
in the middle of its maximum draft time range, thus allowing both ships B and C to
sail with their maximum drafts, as shown in Figure 5.5(b).

These examples are obviously much simpler than a real-world scenario, which
would include slightly different draft functions for each ship, tug availability con-
straints, and asymmetric separation times between ships. However, the drafts, amounts
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Figure 5.5: Manual schedule using MaxDraftFirst vs optimal schedule.
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of cargo, and sailing windows for the maximum drafts used in these examples are
realistic, though simplified. The more complex constraints found in practice at most
ports will make the scheduling problem more complex, and less likely to be solved
optimally by simple rules such as MaxDraftFirst or ObjFunFirst which are typi-
cally used in manual scheduling. For the larger, more realistic example problems
used for experimental results in Chapter 4, such as OneWay_Narrow problems
without tugs, the optimal schedules allowed an average of 120cm more draft for
the set of ships compared to scheduling with constant draft constraints, and 15.8cm
more draft per set of ships compared with manually scheduling the biggest ships
first.

As shown by the examples in this section, even a small difference from the op-
timal schedule has a high cost, which makes this problem worth solving optimally
even for a single port.

5.3 Comparison with Real Schedules

This section compares the schedules produced by solving the models introduced in
Chapters 3 and 4 against schedules produced by human schedulers at a real port.
Actual ship sailing schedules from Port Hedland were compared against schedules
produced by solving the CP model to optimality for the same set of ships. Schedule
comparisons were done for all high tides that had three or more ships sailing on a
single tide over February and March 2012 – a set of 32 schedules in total. Schedules
with less than three ships sailing on a tide were ignored, assuming that a human
scheduler would have been able to find an optimal schedule in these cases, thus
there would have been no room for improvement.

All ships have a design draft which limits the maximum amount of cargo that
can be loaded onto a ship based on its structural specifications. Most ships to be
scheduled were large Capesize class vessels, and some were given drafts of up to
18.42m by human schedulers. To avoid scheduling ships with unrealistically high
drafts in our schedules, ship drafts were capped at 18.5m; however, the design draft
for every individual vessel was not investigated in depth, so some ships may have
been limited in practice by lower design drafts.

We also assumed that any ships that were scheduled by human schedulers with
drafts at least 1m lower than the largest ship sailing on the same tide were smaller
ships that could not load more cargo, (ie. that human schedulers had a good reason
for scheduling ships to sail with significantly less cargo) so we did not allow any
draft increase for these ships in our model. This included all Panamax vessels seen
in the set of schedules. For large ships, we allowed the draft to increase if there
was enough water available at the ship’s scheduled sailing time, up to the 18.5m
maximum.

We did not allow any more ships to be scheduled than were included in the
original schedules, since we had no way to tell if the assignment of ships to tides was
done because ships sailing on future tides were not ready to sail earlier, or because an
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overly crowded tide resulted in the human scheduler deciding to move a ship to the
following tide. This may have resulted in our schedules missing some opportunities
to allow ships to sail on an earlier tide. However, our model allowed the order as well
as the scheduled sailing time of ships to vary, which allowed many opportunities for
improving the schedule.

We had no way of knowing the time at which the ship finished loading, so there
may have been some instances when a human scheduler scheduled a given ship to
sail at the end of the tide in a suboptimal time slot due to the ship running late
loading. In such situations, the improvement found by our approach would not have
been feasible in practice; however, in most cases, ships aim to be ready to sail some
time before the high tide, to ensure that minor loading delays do not disrupt the
schedule, so the assumption that ships could have been scheduled to sail slightly
earlier on the same tide is generally valid.

5.3.1 Experimental Results

For the 2-month period of February and March 2012, optimal schedules found by
solving the CP model would have allowed ships to be scheduled with a total of
26.20m more draft. This is a modest relative improvement of 1.36%, however with the
huge volumes of cargo transported, even a modest relative improvement translates
to significant absolute savings.

Each 1cm of extra draft translates to around 130 tonnes of extra iron ore on a
typical Capesize bulk carrier [Port Hedland Port Authority, 2011b]. Therefore the
extra draft allowed by our schedules translates to 2.04Mt extra iron ore shipped per
year. Given that a typical iron ore bulk carrier can transport 170,000 tonnes of iron
ore [Port Hedland Port Authority, 2011a], this saves approximately 11 voyages per
year.

Translating the number of voyages to an estimate of cost savings or profit increase
for the shipper is complex, as it depends on a number of variables including:

• Freight rates, which are highly volatile.

• Whether the ships are on a time or voyage charter.

• Whether the shipping contract specifies that the importer or the supplier pays
for the cost of shipping.

However, it is possible to make some estimates of cost savings or profit increases
for a number of scenarios, using current freight rates and iron ore prices as a guide.

First, consider a cost per tonne perspective, assuming that the same amount of
iron ore is shipped over a year, but that fewer ships are needed. The shipping cost
of iron ore from Western Australia to China was approximately $10 per tonne for
Capesize vessels as of July 2012 [Curtis, 2012]. Therefore, saving the shipping costs
on 2.04Mt of iron ore translates to $20.4 million in cost savings per year. These cost
savings occur even if there are bottlenecks in production which constrain the amount
of iron ore available for shipping.



§5.4 Limitations and Future Work 97

On the other hand, if the number of ships stays the same, but the amount of cargo
transported on each ship increases (eg. if the port is the bottleneck and there are no
constraints in how much iron ore can be produced) using optimal schedules allows
2.04Mt more iron ore to be transported on the same set of ships. The average price of
iron ore for the first six months of 2013 was $135 per tonne [Index Mundi, 2013], and
the profit for the exporter of shipping iron ore from Western Australia to China was
estimated to be about $75/tonne in 2012 [Curtis, 2012]. The extra 2.04Mt of iron ore
thus translates to a $275 million annual increase in revenue or a $153 million annual
increase in profit.

In practice, these estimates may vary significantly based on freight rates, the price
of iron ore, and other factors such as the classes of ships chartered, and the details
of the shipping contracts. However, these figures provide an order-of-magnitude
estimate of the benefit that could be obtained by using optimal ship schedules with
time-varying drafts. Even allowing for large fluctuations in the ship charter rate, the
price of iron ore and other factors, these estimates clearly show that using DUKC R©

Optimiser to produce optimal schedules for ship sailing times at draft-restricted bulk
export ports has an enormous potential benefit to industry.

5.4 Limitations and Future Work

One possible limitation of the approaches presented in this chapter is the robustness
of the resulting schedules, as robustness is not considered by any the scheduling al-
gorithms presented in this thesis. The allowable sailing draft for each vessel at each
time is calculated using conservative predictions of all factors that affect safe drafts,
and the separation times between ships are also conservative enough to allow for
some inaccuracy in ship sailing times. The resulting schedules are robust enough to
be used in practice at Australia’s largest export port. However, an in-depth investiga-
tion of the tradeoff between robustness and cost optimisation has not been conducted
and would be a worthwhile avenue of future research.

Note that the risk of using any of the algorithms presented in this thesis for
scheduling ship sailing times is not grounding but delay. Ports using these ap-
proaches still need to do final safety checks before sailing, and if weather conditions
have changed beyond the conservative forecasts used to calculate draft restrictions
during planning, ships may need to be delayed to the following high tide rather than
sailing on schedule.

5.5 Summary

This chapter presented the DUKC R© Optimiser commercial system for optimising
ship schedules at a bulk export port that was implemented based on the research
presented in Chapters 3 and 4 of this thesis, and compared the optimal schedules
produced by solving the CP model from Chapter 3 against real schedules created by
human schedulers at Port Hedland. DUKC R© Optimiser was estimated to have the
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potential to increase annual revenue at the port by $275 million, or to reduce costs
by $20.4 million in the event of bottlenecks in the supply chain constraining iron ore
production.

A comparison of optimal schedules against simple heuristics that may be easily
applied by human schedulers was also presented, to demonstrate how such heuristics
may fail to find the optimal schedule even for a simple problem with three ships.
Optimal schedules were also compared against results that would be produced by a
system that used a fixed draft limit for the port.

The next chapter investigates the impact of considering time-varying draft restric-
tions in a larger maritime transportation problem – the cargo routing problem with
time-varying ship speeds. The problem takes into account profits resulting from de-
livery of cargoes, routing costs, as well as fuel usage as a function of ship speed, and
the impact of time-varying draft restrictions on available ship arrival times at ports.



Chapter 6

Ship Routing and Scheduling with
Variable Speeds and Drafts

6.1 Introduction

This chapter extends time-varying draft restrictions to a larger problem in maritime
transportation – the cargo routing problem which involves finding a minimum cost
solution for routing a set of cargoes between origin and destination ports using a
fleet of ships. Another important consideration in cargo routing in recent years has
been optimisation of ship speeds to reduce fuel usage. The approaches investigated
in this chapter build on the recent work of Fagerholt, Laporte, and Norstad [2010]
and Norstad, Fagerholt, and Laporte [2011] on ship speed optimisation on a fixed
route and in a cargo routing problem respectively. These approaches are extended
to also consider time-varying restrictions on ship draft at each port, including the
impact this has on the allowable ship sailing times and therefore on optimal speeds.

6.1.1 Calculating Shipping Costs

The costs that need to be considered for shipping some amount of cargo on a fixed
shipping route include the fuel costs, which increase with faster ship speed, and
other costs such as ship charter rates which are linear over time and thus increase
with slower ship speeds and longer travel times.

Fuel consumption (and therefore fuel cost) in a given period of time is propor-
tional to a cubic function of the ship speed above a certain speed, and constant below
this speed [Ronen, 1982; Ryder and Chappell, 1980]. This relationship is confirmed by
empirical observations [Vernimmen, Dullaert, and Engelen, 2007]. The fuel cost for
travelling a given distance is therefore proportional to the square of the ship speed.
Other costs that are constant over time are inversely proportional to the ship’s speed
for a given distance.

Psaraftis and Kontovas [2009] modelled the fuel consumption in tonnes per day
for a fully loaded Panamax bulk carrier as F = k1 · V3 where k1 = 1.4946 · 10−7 and
V is in kilometres per day. This is supported by empirical data [Clarkson Research,
2012].
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Figure 6.1: Fuel cost, constant cost, and total cost for travelling a fixed distance with
a range of ship speeds (in knots).

Converting V to knots (nautical miles per hour), we find that the fuel cost for
a Panamax bulk carrier travelling distance D (in nautical miles) with velocity V (in
knots) can be modelled by Equation (6.1), where k2 = 5.4671 · 10−4, and p is the price
of bunker fuel, around US$650 per tonne as of 2012 [Bunkerworld, 2012].

fuel_cost(V, D) = p · k2 · D ·V2 (6.1)

A ship scheduled to travel below its minimum speed Vmin will actually travel at
Vmin and wait when it arrives at its destination. The fuel_cost(V, D) is replaced in
Equation (6.2) by fuel_cost(Vmin, D), whereas the constant cost is calculated based
on V < Vmin.

Costs that are constant over time also need to be taken into account. In this chap-
ter, constant costs are approximated by the average time charter rate for a Panamax
bulk carrier over the financial year 2011-12 – around US $10,000 per day [DryShips
Inc., 2012; CoalSpot.com, 2012]. The total shipping cost, given by Equation (6.2), is
the sum of fuel_cost and the $10,000 per day = $416.67 hourly constant cost h. We
do not consider inventory costs in this chapter, as these are generally much lower for
bulk cargo than for container cargo, however, these could be incorporated similarly.

total_cost(V, Vmin, D) = fuel_cost(V, D) + hourly_cost(V, D) (6.2)

= p · k2 · D ·max(V, Vmin)
2 + h · D

V

Figure 6.1 shows the sum of fuel_cost and the constant cost for travelling a fixed
distance with a range of ship speeds. This demonstrates that for each ship, there is
an optimal speed below which the costs increase due to a longer voyage time, and
above which the costs increase due to higher fuel consumption.
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6.1.2 Effect of Draft on Shipping Costs

The models presented in this chapter consider time-varying draft constraints at way-
points, and the amount of cargo carried on each ship is a decision variable. The
models therefore also need to consider the effect that sailing with increased draft has
on shipping costs.

Sailing with an increased draft reduces annual shipping costs for a route by allow-
ing more cargo to be carried on each ship, thus allowing fewer ships to be chartered
over the long term. Increased tonnage transported on a ship can be translated to an
estimate of costs saved by calculating the average cost of shipping one tonne of cargo
over the given route, as was done in Chapter 5. However, increasing ship loading
also increases fuel usage, and the increased fuel costs need to be subtracted from
the cost reduction of carrying more cargo on the same ship. Empirical results show
that ballast (unloaded) voyages use approximately 20% less fuel at the same speed
compared to fully loaded voyages [Endresen et al., 2004; Wijnolst and Wergeland,
1997].

For a ship that has a 10m difference in draft between fully loaded and unloaded
states, sailing with 10cm deeper draft allows the ship to carry 1% extra cargo, thus
resulting in a cost savings of 1% of the normal cost of a voyage. However, assum-
ing that the 10m difference in draft between the fully loaded and unloaded states
translates to a 20% difference in fuel usage, and that fuel usage increases linearly
with the draft increase, the 1% increase in draft also results in a 0.2% increase in fuel
consumption for the voyage, thus increasing the fuel cost by 0.2%.

The fuel cost can comprise up to 75% of the total shipping cost for a voyage [Ro-
nen, 2011], thus the increase in fuel usage caused by sailing with a higher draft may
reduce the cost savings of carrying more cargo by as much as 15%. Therefore the
increased fuel usage caused by a higher ship loading, while it is much lower than the
cost savings produced by sailing with more cargo, is still significant and needs to be
taken into account in the cost optimisation model with variable speed and loading
presented in this chapter.

An example with realistic figures is: the cost of shipping iron ore from Australia
to China is approximately around US$10 per tonne as of July 2012, or $1.5 million
for a Capesize bulk carrier carrying 150,000 tonnes of ore [Curtis, 2012]. If 10% more
cargo (15,000 tonnes) could be loaded on each ship, this would result in savings of
10% of a voyage per ship ($150,000), but increase the fuel cost by 2% for each ship.
If we assume that the fuel cost comprises 75% of the total cost of the voyage, the
increased fuel usage increases the cost of this voyage by $30,000, resulting in a total
savings of $120,000.

The models presented in this chapter do not consider port charges and canal fees
since, as observed by Ronen [2011], these are constant for a container fleet operat-
ing on a weekly schedule. These will also be constant for a ship travelling on a
fixed route. For a ship routing and scheduling problem, the port charges may vary
depending on which ship in the fleet is used to transport each cargo; however, we
assume that the fleet is composed of ships of a similar size (eg. all Panamax bulk
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carriers) so port charges would be very similar for all ships. For a heterogeneous
fleet composed of many different vessel sizes, port charges may vary depending on
the ship used to transport each cargo, and may need to be considered in more detail.

In this chapter, the cost savings for an increased draft is approximated by Equa-
tion (6.3), where c is the cost of shipping one tonne of cargo for this voyage, t is the
increased tonnage per centimetre of draft, di is the draft for which the cost savings is
being calculated, d0 is the minimum draft being compared against, Dj is the distance
for leg j of the voyage, and vj is the speed for leg j, Vj is the speed for leg j, Vmin is the
minimum speed at which the ship can actually travel, dmax is the ship’s maximum
draft, and dul is the draft of an unloaded ship. The total cost savings, described by
Equation (6.3), is the cost of shipping one tonne of cargo c multiplied by the number
of tonnes of extra cargo shipped by increasing draft – t · (di − d0) – minus the cost of
the extra fuel used due to sailing with more cargo.

cost_savings(di) = c · t · (di − d0)− (6.3)

0.2 · di − d0

dmax − dul
· ∑

j∈[0,nLegs−1]
fuel_cost(max(Vj, Vmin), Dj)

Finally, the objective is to minimise total cost = fuel cost + constant cost – cost
savings, where fuel cost + constant cost is given by Equation (6.2) and cost savings is
given by Equation (6.3).

6.1.3 Existing Approaches to Cargo Routing with Variable Ship Speed

The two most closely related papers to the problems investigated in this chapter
are Fagerholt, Laporte, and Norstad [2010] and Norstad, Fagerholt, and Laporte
[2011]. Fagerholt, Laporte, and Norstad [2010] optimised the ship speed on each
leg of a fixed liner shipping route, with time windows for arrival at each waypoint.
The problem assumes that there is no waiting time at waypoints. Three approaches
were compared:

1. Non-linear programming model with speed as the primary decision variable.

2. Non-linear programming model with sailing time as the primary decision vari-
able.

3. Discretising the arrival times within the time window at each waypoint and
solving the speed optimisation problem as a shortest path problem on a di-
rected acyclic graph.

The third approach of discretising the arrival times and solving using a shortest
path algorithm was found to be the most efficient. The arrival time was chosen as
the variable to discretise because this results in a graph where the number of nodes
is linear with the number of discretisations and the number of waypoints in the
route. Discretising speeds or sailing times between each pair of waypoints results in



§6.2 Speed Optimisation for a Fixed Route 103

a graph that grows exponentially with the number of waypoints or the number of
discretisations.

This problem of speed optimisation of a fixed route with time windows is very
similar to the problem presented in this chapter, but this research also considers
time-varying draft constraints which result in variable time windows for different
ship drafts, as well as resource conflicts caused by ships arriving at waypoints at the
same time.

Norstad, Fagerholt, and Laporte [2011] investigated a ship routing and schedul-
ing problem with speed optimisation on each leg of each route. The approach pre-
sented by Fagerholt, Laporte, and Norstad [2010] was used to determine the profit
contribution of each candidate route by optimising speeds for a single ship on each
candidate route. The routing and scheduling problem was solved by generating a
number of initial solutions and using a multi-start local search heuristic to improve
the best solutions. This method is discussed in more detail in Section 6.5, which
builds on the work of Norstad, Fagerholt, and Laporte [2011] to incorporate time-
varying draft restrictions into a ship routing and scheduling problem with variable
ship speeds.

6.2 Speed Optimisation for a Fixed Route

6.2.1 Problem Description

As a first step towards solving the cargo routing problem with ship speed optimi-
sation and time-varying draft, this section extends the work of Fagerholt, Laporte,
and Norstad [2010] on the speed optimisation problem for a single ship on a fixed
route to include time-varying draft constraints at all waypoints along the route. This
problem is also extended to be able to consider multiple ships travelling along the
same route, with resource conflicts due to several ships needing to travel through a
draft-constrained waypoints on a single high tide.

This problem corresponds to real-world situations such as ships travelling through
the draft-constrained Torres Strait, north of Australia. One of the problem instances
considered in this chapter is similar to the Rio Tinto shipping route transporting
bauxite from the mining port of Weipa, Australia, through the Torres Strait, to the
aluminium refinery at the port of Gladstone (see map in Figure 6.2). However, other
shipping routes with draft-constrained ports and waterways may also benefit from
speed optimisation with time-varying draft constraints, eg. shipping routes through
the Malacca Strait, or shipping routes through a series of draft-constrained ports such
as those considered by Rakke et al. [2012].

For the fixed-route problem, we assume that the draft remains constant for the
entire route, ie. that the ship does not load or unload cargo at intermediate waypoints
other than the start and end of the route. This models a route between two ports, with
draft-restricted waterways such as the Torres Strait or Panama Canal as intermediate
waypoints. This approach can be extended to optimise speeds and drafts for a route
with multiple ports by splitting it into subroutes between each pair of ports, and
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Figure 6.2: Map of Weipa – Torres – Gladstone shipping route.

optimising the speeds and drafts for each subroute independently.
The key features of this problem are:

1. Let S be a set of ships, each with a range of possible drafts and speeds, and a
cargo capacity per centimetre of draft within the allowable range.

2. All ships sail along a fixed route between two ports with several waypoints.

3. Each port and waypoint has time-dependent draft constraints that vary with
tide, waves, current, and other environmental conditions.

4. Draft constraints can be converted to multiple time windows for each possible
ship draft. These time windows may vary with ship draft (if they are entirely
dependent on draft constraints) or may be static, for example if the earliest
arrival time at the destination is determined by needing to have enough storage
space to unload the ship’s cargo.

5. Loading and unloading time at ports are ignored, similarly to Fagerholt, La-
porte, and Norstad [2010]. However, ships may wait at waypoints if required,
to ensure that minimum speeds do not make time windows infeasible.

6. At each port and waypoint, there may be a minimum separation time between
ships, to avoid ships sailing too close together in a narrow draft-restricted wa-
terway.

7. The objective is to minimise the sum of the total costs and cost savings for the
set of ships, including fuel costs, constant-time costs, cost savings for sailing
with increased draft, and increased fuel costs caused by sailing with a higher
loading.
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This section and Section 6.3 investigate the Speed Optimisation Problem with
Time-Varying Draft (SOPTVD) for a single ship, to find the optimal speeds and
optimal draft for a fixed route with time-varying draft constraints at waypoints.
Section 6.4 then extends this approach to solve the Multi-Ship Speed Optimisation
Problem with Time-Varying Draft (MS-SOPTVD) which includes resource conflicts
between ships scheduled close together at draft-restricted waypoints, and Section 6.5
investigates the cargo routing and scheduling problem with speed optimisation and
time-varying draft restrictions with the single-ship problem presented in this section
used as a subproblem to solve the larger routing problem.

6.2.2 Formal Problem Definition

We initially solve the Speed Optimisation Problem with Time-Varying Draft for a
ship with a fixed draft, but with time-varying draft restrictions at each waypoint.
Section 6.3 extends this problem to also find the optimal draft for the ship from a
range of drafts.

The following problem definition for the Speed Optimisation Problem with Time-
Varying Draft (SOPTVD) for a ship with a fixed draft is based on the problem def-
inition for the Speed Optimisation Problem presented by Fagerholt, Laporte, and
Norstad [2010] and Norstad, Fagerholt, and Laporte [2011].

Given a route, i.e. a sequence of waypoints that a given ship must sail past, with
corresponding allowable time windows for the ship’s fixed draft, the objective of the
SOPTVD is to determine the speed for each leg of the route so that the total cost for
the route is minimised, where the cost is specified by Equation (6.2) as the sum of
the fuel cost and constant cost per time.

Let the waypoints along the route be indexed by i = 0, ..., N, with Vi,i+1 and Di,i+1

being the speed and distance respectively from waypoint i to i + 1. Let Ti be the
arrival time at waypoint i. Let Vmax be the maximum possible speed for the ship, and
Vmin be the minimum speed the ship can travel at in practice, used to calculate the
minimum fuel cost for the voyage if the ship travels below this speed and waits.

Let Wi be the set of draft-restricted time windows w at waypoint i for the given
ship with the given draft, with each time window specified by the time interval w, w.
Each waypoint also has earliest and latest arrival times Ei and Li respectively to
represent any restrictions on cargo pickup and delivery times. For a waypoint where
there is no limit on arrival times except for the draft restriction, Ei and Li can be set
to the start or end of the time range.

Let total_cost(Vi,i+1, Vmin, Di,i+1) specify the total cost for travelling the leg from
i to i+ 1 at speed Vi,i+1, including both fuel and other costs, as given by Equation (6.2)
in Section 6.1.1. Vmin is used in this equation to place a lower bound on the fuel cost
for each leg as the fuel used by the ship travelling at minimum speed.

The SOPTVD can now be defined as follows:

minimise
N−1

∑
i=0

total_cost(Vi,i+1, Vmin, Di) (6.4)
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subject to

Vi,i+1 = Di,i+1/(Ti+1 − Ti), ∀i ∈ [0, N − 1] (6.5)

0 < Vi,i+1 < Vmax, ∀i ∈ [0, N − 1] (6.6)

Ei ≤ Ti ≤ Li, ∀i ∈ [0, N] (6.7)

∃w ∈Wi s.t. w ≤ Ti ≤ w, ∀i ∈ [0, N] (6.8)

The objective function (6.4) minimises the sum of the fuel cost and waiting cost
for the route. Equation (6.5) specifies the speed as a function of time and distance
for each leg. Equation (6.6) ensures that no ship travels faster than its maximum
speed, and that each ship keeps moving at a speed above zero. Note that Norstad,
Fagerholt, and Laporte [2011] also specified a minimum speed for each ship, and
allowed waiting by extending the time between waypoints. On the other hand, we
incorporate waiting by adjusting the speed for each leg, and using a minimum speed
to place a lower bound on the fuel cost. Finally, Equation (6.7) specifies the earliest
and latest arrival times, and equation (6.8) specifies that the arrival time at each
waypoint must lie within one of the draft-restricted time windows for that waypoint,
i.e. that the tide must be high enough for the ship to sail.

The final draft-restricted time window constraint and the travel time being taken
into account in the cost function are the only substantial differences from the Speed
Optimisation Problem defined by Norstad, Fagerholt, and Laporte [2011]. Other
changes are cosmetic only.

6.2.3 Shortest Path Approach

The Speed Optimisation Problem (SOP) was solved by Fagerholt, Laporte, and Norstad
[2010] for a single ship with a fixed route, no draft constraints and with fixed win-
dows for delivery times at waypoints. Their approach worked by discretising arrival
times and converting the SOP into a shortest-path problem where nodes are the dis-
cretised arrival times at each waypoint, and the costs of each arc corresponds to the
cost of travelling between those waypoints at those times.

This approach was able to find close-to-optimal solutions quickly, and the error
could be made arbitrarily small by choosing a fine enough discretisation. Arrival
time discretisation was used instead of speed discretisation since the latter led to the
search tree growing exponentially with the number of waypoints, whereas arrival
time discretisation resulted in the search tree growing linearly with the number of
waypoints.

To extend the shortest path approach to multiple time windows, discretisation
points were selected to be evenly spaced inside the entire time range for a given
waypoint, from the first allowable sailing time to the last allowable sailing time,
including infeasible regions between time windows. Then any discretisation points
that were initially outside a time window were adjusted to the nearest time window,
and the points inside each time window were evenly spaced. This results in the
start and end of each interval always being included in the discretised values as long
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Figure 6.3: RSA Step 1: Calculate optimal speed for route, ignoring time windows
except at first and last waypoints. Then find waypoint with largest time window

violation and adjust its arrival time to the nearest feasible time.

as the number of discretisations is high enough. This discretisation approach was
chosen because the optimal path is more likely to go through the start or end of a
time window than a random point in the middle.

6.2.4 Recursive Smoothing Algorithm

The Speed Optimisation Problem for a single ship with a fixed route and no draft
constraints was also solved using a recursive smoothing algorithm (RSA), which was
able to find optimal solutions, and was also found to be faster than the shortest path
approach [Norstad, Fagerholt, and Laporte, 2011].

In this chapter, we implement both the shortest path method and the recursive
smoothing algorithm for solving the single ship fixed-route problem, to investigate
which approach works best when the single ship solutions are used as a subprob-
lem of the Multi-Ship Speed Optimisation Problem with Time-Varying Draft (MS-
SOPTVD).

The recursive smoothing algorithm presented by Norstad, Fagerholt, and Laporte
[2011] is based on the idea that, if there were no time windows constraining the sail-
ing times for each waypoint, the optimal speed for each leg would be constant. For a
cost function that is convex and non-decreasing over the allowable range of speeds,
the optimal speed is also the minimum speed. However, this optimal speed may
result in an arrival time at one of the waypoints falling outside the time windows
at that waypoint. Both Fagerholt, Laporte, and Norstad [2010] and Norstad, Fager-
holt, and Laporte [2011] only consider problems with a single time window at each
waypoint.

The algorithm starts by calculating an optimal speed in the absence of time win-
dow constraints, except at the first and last waypoints. Because the cost function is
monotonic, the optimal speed is always the slowest possible speed, departing from
the first waypoint at the earliest possible sailing time, and arriving at the final way-
point at the latest possible arrival time, as shown in Figure 6.3. If no time windows
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Figure 6.4: RSA Step 2: Split route at waypoint with largest time window violation
and recalculate subroutes recursively.

are violated, this is the optimal solution. If any time window is violated, as is the
case for Waypoints 3 and 4 in Figure 6.3, the time for that waypoint is adjusted to the
start or end of the time window, whichever is nearest, as shown in Figure 6.3. The
route is then split into two subroutes at that waypoint, as shown in Figure 6.4, and
the procedure repeated recursively until all time window constraints are met. In this
example, after Figure 6.4 there are no more time window violations, so no further
route splitting is required.

Algorithm 1 describes the recursive smoothing algorithm introduced by Norstad,
Fagerholt, and Laporte [2011]. Let ti be the arrival time at node i and vi,i+1, di,i+1

the speed and distance respectively from i to i + 1. Let s and e be the start and end
nodes for the partial route, respectively. The time window for node i is [ti, ti]. The
algorithm checks each waypoint and splits the route on node p with the largest time
window violation δ, regardless of whether the arrival time is too early or too late.

Before the algorithm is called, the start and end time of the route must be set to
ts = t0, which is the starting position for the ship, and te = te respectively, since the
original recursive smoothing algorithm presented by Norstad only considers mono-
tonic cost functions where the lowest speed is the optimal speed, so the optimal route
must start at the earliest possible departure time from the first waypoint, and end at
the latest possible arrival time at the last waypoint.

6.2.5 Extending Norstad’s RSA for Multiple Time Windows

The introduction of time-varying draft constraints at waypoints creates multiple time
windows at each waypoint around each high tide, not only a single time window
defined by an earliest and latest arrival time. The cost function for our problem is
also modelled as non-monotonic, since ships may wait for the start of a time window,
thus removing any constraint on minimum speed. We therefore need to extend the
recursive smoothing algorithm presented by Norstad, Fagerholt, and Laporte [2011]
to be able to deal with multiple time windows at each waypoint and a non-monotonic
cost function.
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Algorithm 1 recursive_smoothing_algorithm(s, e), from Norstad, Fagerholt, and
Laporte [2011]

δ← 0
p← 0
v∗ ← ∑e−1

i=s di,i+1/(te − ts)
for i← s to e do

i← i + 1
vi−1,i ← v∗

ti ← ti−1 + di−1,i/vi−1,i
if ti − ti > |δ| then

δ← ti − ti
p← i

end if
if ti − ti > |δ| then

δ← ti − ti
p← i

end if
end for
if δ > 0 then

tp ← tp
recursive_smoothing_algorithm(s, p)
recursive_smoothing_algorithm(p, e)

end if
if δ < 0 then

tp ← tp
recursive_smoothing_algorithm(s, p)
recursive_smoothing_algorithm(p, e)

end if
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Figure 6.5: MW_RSA Step 1: Try splitting the route on both the waypoint with the
largest distance to the previous time window, and the waypoint with the largest
distance to the next time window. Try adjusting the time at the selected waypoint to

both the nearest feasible times before and after the original optimal time.

We call our extension to Norstad’s Recursive Smoothing Algorithm the Multi-
Window Recursive Smoothing Algorithm (MW_RSA).

The cost function for the Speed Optimisation Problem for a ship travelling along
a fixed route with a fixed draft depends only on speed. However, since there is no
restriction on minimum sailing speed for each ship, and the problem involves both
fuel costs and costs that are constant over time, the total cost function shown in
Figure 6.1 is not monotonic.

The total cost function for travelling a given distance is a quadratic function of
speed, given by Equation (6.2). The optimal speed is given by differentiating the cost
function and solving for the optimal speed Vopt, as shown in Equation (6.9). However,
if this optimal speed results in an arrival time at a waypoint that is outside the time
windows, the optimal arrival time may be either at the end of the previous time
window, or the start of the next time window. In Equation (6.9), V is the speed of the
ship, D is the distance travelled, p is the price of one tonne of fuel, k2 is a constant
used to calculate fuel usage for the ship, and h is the hourly cost of operating the
ship.

total_cost(V, D) = p · k2 · D ·V2 + h · D
V (6.9)

=⇒ d
dV (p · k2 · D ·V2

opt + h · D
Vopt

) = 0

=⇒ 2p · k2 · D ·Vopt − h · ( D
V2

opt
) = 0

=⇒ Vopt =
3
√
( h

2p·k2
)

MW_RSA first calculates optimal speeds for the route in the absence of time
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Figure 6.6: MW_RSA Step 2: After adjusting arrival time at selected waypoint, split
the route at that waypoint, and recursively optimise both subroutes until all arrival
times at waypoints are within valid time windows. In this case, both subroutes WP1

– WP3 and WP3 – WP5 will need to be adjusted further.

windows, based on Equation (6.9). If there are no time window violations, this
solution is optimal.

If time window constraints are breached at any waypoint, we need to choose a
waypoint at which to split the route. For the single-window RSA, we could always
pick the waypoint with the largest time window violation, regardless if the original
optimal time was before or after the available sailing window. For the multi-window
case, we need to consider splitting the route at two possible waypoints: the waypoint
with the largest distance to the end of the previous time window, and the waypoint
with the largest distance to the start of the next time window, as shown in Figure 6.5.
If we only consider splitting the route at one waypoint, we risk cutting off valid
time windows for adjacent waypoints, and missing the optimal solution, as shown
in Figures 6.7 and 6.8.

After selecting a waypoint to split the route at, we need to consider adjusting the
arrival time at that waypoint to both the nearest valid sailing times before and after,
since again we do not know whether sailing slightly faster or slightly slower will
produce the better solution. After adjusting the arrival time at the selected waypoint,
we split the route into two subroutes as shown in Figure 6.6, and recursively calculate
the optimal speeds for the two subroutes.

Once subroute costs are calculated, we pick the waypoint and arrival time with
the lowest total cost for the two subroutes. If the optimal speed for any subroute is
above the ship’s maximum speed, this branch of the problem is infeasible, and the
algorithm returns an infinite cost for that subroute. Once all feasible branches have
been explored, we select the combined route with the lowest total cost.

Note that for the single-window RSA presented by Norstad, Fagerholt, and La-
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Figure 6.7: Example showing why both the waypoints with the largest time window
violations before and after need to be considered for splitting the route. WP2 has
the largest time window violation overall; however, if only WP2 is considered for

splitting, the valid window at WP3 will not be found.

Figure 6.8: WP3 has the largest distance to the previous time window, and consider-
ing both WP2 and WP3 finds the optimal route.
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porte [2011], the cost function is monotonic, so it is always possible to fix the arrival
time at the final waypoint to the latest feasible arrival time (the end of the time win-
dow). For MW_RSA, the cost function can be quadratic, so the optimal arrival time
may fall between two waypoints. This means that when choosing the waypoints with
the largest time window violations to split the route on, the final waypoint must also
be considered for splitting. After each split, the two subroutes to be calculated may
be slightly different problems – the subroute on the left has a fixed arrival time its
final waypoint, whereas the subroute on the right may still have a flexible arrival
time at the final waypoint if the end of the subroute is the final waypoint and its
arrival time has not yet been set.

6.2.6 Formal Algorithm Definition

Let the waypoints along the route be indexed by i = 0, ..., N, with Vi,i+1 and Di,i+1

being the speed and distance respectively from waypoint i to i + 1. Let s and e be
the start and end nodes for the partial route, respectively. Let Ti be the arrival time
at waypoint i. Let Vmax be the maximum possible speed for the ship, and Vmin be
the minimum speed the ship can travel at in practice, used to calculate the minimum
fuel cost for the voyage if the ship travels below this speed and waits. Let Vopt be the
optimal speed in the absence of time window constraints, given by Equation (6.9).

Let Wi be the set of draft-restricted time windows w at waypoint i for the given
ship with the given draft, sorted in increasing order of time, with each time window
specified by the time interval w, w. Each waypoint also has earliest and latest arrival
times Ei and Li respectively for the given ship, which can be the start or end of the
time range for a waypoint where there is no limit on arrival times except for the
draft restriction. Let total_cost(Vi,i+1, Vmin, Di,i+1) specify the cost for travelling the
leg from i to i + i at speed Vi,i+1, including both fuel and other costs, as given by
Equation (6.2) in Section 6.1.1. Vmin is used in this equation to place a lower bound
on the fuel cost for each leg as the fuel used by the ship travelling at minimum speed.

Let get_valid_times(t, Wi) be a function that returns (t, t) – the nearest times
before and after t that are within the time windows Wi for waypoint i. If t is already
within a window, both t and t will be equal to t. If t is before the first window or after
the last window, then an INFEASIBLE flag will be returned for t or t respectively.
Function get_valid_times(t, Wi) is defined by Algorithm 2.

Let get_TW_violations(Ts, ...Te, Ws, ...We) be a function that returns (ilate, iearly,
tlate, tlate, tearly, tearly), where ilate and iearly are the indices of the waypoints with the
largest time window violations δlate and δearly for a ship arriving late or early respec-
tively; tlate and tlate are the nearest valid times for the time windows before and after
the optimal arrival time for waypoint ilate; and tearly and tearly are defined similarly
for waypoint iearly.

If all (Ts, ...Te) are within the time windows, the flag OK is returned for (ilate and
iearly. If all time window violations were before or after the first or last window, then
the flag INFEASIBLE is returned for tlate and tearly or tlate and tearly) respectively. If
there is no valid time at all for some waypoint, the flag INFEASIBLE is returned



114 Ship Routing and Scheduling with Variable Speeds and Drafts

Algorithm 2 get_valid_times(t, Wi)
t = t = INFEASIBLE
for w ∈Wi from earliest to latest do

if w ≥ Ei and w ≤ Li then (Only include windows that are within [Ei, Li])
if t < w or t < Ei then (t is before this window, or before the earliest time.)

t = max(Ei, w)
return (t, t)

end if
if t > Li then (t is after the latest arrival time.)

t = min(Li, w)
return (t, t)

end if
if t > w then (t is after this window.)

t = w
else (t is within this window and the allowable time range.)

return (t, t)
end if

end if
end for
return (t, t)

Algorithm 3 get_TW_violations(Ts, ...Te, Ws, ...We)
δlate = δearly = 0 (Biggest time differences found so far.)
ilate = iearly = OK
tlate = tlate = tearly = tearly = INFEASIBLE
for i ∈ [s, ..., e] do

(t, t) = get_valid_times(Ti, Wi)
if t 6= Ti then (Ti is not within a window.)

if t = t = INFEASIBLE then (No valid times found for this waypoint.)
ilate = iearly = tlate = tlate = tearly = tearly = INFEASIBLE
return (ilate, iearly, tlate, tlate, tearly, tearly)

end if
if t 6= INFEASIBLE and Ti − t > δlate then (Latest arrival found so far.)

δlate = Ti − t
ilate = i, tlate = t, tlate = t

end if
if t 6= INFEASIBLE and t− Ti > δearly then (Earliest arrival found so far.)

δearly = t− Ti
iearly = i, tearly = t, tearly = t

end if
end if

end for
return (ilate, iearly, tlate, tlate, tearly, tearly)
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for all of (ilate, iearly, tlate, tlate, tearly, tearly). get_TW_violations(Ts, ...Te, Ws, ...We) is
defined by Algorithm 3.

Algorithm 5 describes the MW_RSA algorithm for a ship with a fixed draft
and fixed route. The algorithm returns the minimal cost of the route C, or the
INFEASIBLE flag if no route was found, eg. if one waypoint had no time win-
dows. This algorithm uses function Min_Feasible_Cost defined by Algorithm 4 to
choose the minimum feasible cost for two routes, passing through the earlier or later
time a given waypoint.

Algorithm 4 Min_Feasible_Cost(Cle f t, Cright, Cle f t, Cright)

C = C = C = INFEASIBLE
if Cle f t 6= INFEASIBLE and Cright 6= INFEASIBLE then

C = Cle f t + Cright
end if
if Cle f t 6= INFEASIBLE and Cright 6= INFEASIBLE then

C = Cle f t + Cright
end if
if C = INFEASIBLE then

C = C
end if
if C = INFEASIBLE then

C = C
end if
if C 6= INFEASIBLE and C 6= INFEASIBLE then

C = min(C, C)
end if
return C

When MW_RSA is initially called for the complete route, the input Ts is set to the
earliest allowable sailing time E0 or the start of the next time window, since the ship
can wait at any point along the route, so there is never any advantage to waiting at
the first waypoint and we can assume without loss of generality that the ship always
starts sailing from the first waypoint at the earliest feasible sailing time. The input
Te is the arrival time at the last waypoint for the subroute; it is set to UNDEFINED
when the arrival time of the final waypoint of the subroute has not yet been set,
including when MW_RSA is initially called.

6.2.7 Smoothing Step

The MW_RSA algorithm described above finds the optimal time window for each
waypoint, but it may make too many speed changes. An additional smoothing step
is therefore needed to find the optimal sailing time within each waypoint.

Figure 6.9 shows an example of a situation where the basic MW_RSA algorithm
will result in a suboptimal path. The algorithm finds the best time window for each
waypoint, but because of the order in which waypoints are selected for splitting, and
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Algorithm 5 MW_RSA(s, e, Ts, Te)
Step 1: Calculate initial constant speed, ignoring time windows at waypoints.
if Te = UNDEFINED then

Vconst = Vopt
else

Vconst = ∑e−1
i=s Di,i+1/(Te − Ts)

end if
for i ∈ [s, ..., e− 1] do (Calculate times at waypoints.)

Ti+1 = Ti + Di,i+1/Vconst
end for
Step 2: Check for time window violations
(ilate, iearly, tlate, tlate, tearly, tearly) = get_TW_violations(Ts, ...Te, Ws, ...We)
if ilate = iearly = INFEASIBLE then (No solution possible for this route.)

return INFEASIBLE
end if
if ilate = iearly = OK then (No time window violations found. Calculate cost.)

for i ∈ [s, ..., e− 1] do (Calculate cost for each leg.)
Ci,i+1 = total_cost(Vconst, Vmin, Di,i+1)

end for
C = ∑e−1

i=s Ci,i+1
return C

else (Time window violations found.)
Step 3a: Try splitting route at waypoint with latest arrival ilate.
Cle f t = Cright = Cle f t = Cright = INFEASIBLE
if tlate 6= INFEASIBLE then (First window feasible. Calculate costs.)

Cle f t = MW_RSA(s, ilate, Ts, tlate)
Cright = MW_RSA(ilate, e, tlate, Te)

end if
if tlate 6= INFEASIBLE then (Second window feasible. Calculate costs.)

Cle f t = MW_RSA(s, ilate, Ts, tlate)
Cright = MW_RSA(ilate, e, tlate, Te)

end if
Clate = Min_Feasible_Cost(Cle f t, Cright, Cle f t, Cright)

end if
if iearly = ilate then (Only one waypoint to calculate.)

return Clate
else (Two possible waypoints. Calculate cost for 2nd waypoint, return min cost.)

Step 3b: Try splitting route at waypoint with earliest arrival, iearly.
Calculate Cearly as Step 3a:, with iearly, tearly, tearly replacing ilate, tlate, tlate.
if Clate 6= INFEASIBLE and Cearly 6= INFEASIBLE then

return min(Clate, Cearly)
else

if Clate = INFEASIBLE then
return Cearly

else
return Clate

end if
end if

end if
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Figure 6.9: Example showing why a final smoothing step is required. WP2 or WP4
would be chosen first for splitting; however both result in a suboptimal route, as the
optimal path passes through the middle of time windows at both WP2 and WP4. A

smoothing step is required to remove unnecessary speed changes.

the adjustment of waypoint arrival times to the nearest feasible time, this results in
the ship arriving at the edge of the window at WP4, even though a constant speed
between the WP3 and WP5 arrival times would pass within the same time window
at WP4, and would reduce the travel cost. WP2 and WP4 are the waypoints with the
largest time window violations, and therefore the waypoints that would be selected
first for splitting, and for adjusting the times to the edges of adjacent time windows.
However, the optimal path passes through the middle of the time windows at both
of these waypoints.

To deal with situations like this, where the algorithm finds the optimal time win-
dows at waypoints but results in a path with too many speed changes, we need to
add an additional step of smoothing the speeds between successive waypoints. We
modify the basic MW_RSA algorithm presented in Section 6.2.6 to calculate each path
and perform an additional smoothing step to eliminate any unnecessary changes in
speed.

Algorithm 6 describes the final smoothing step of the Multi-Window RSA algo-
rithm. Let ti be the arrival time at waypoint i, and t′i be the time being considered
for smoothing at waypoint i. Let vi,i+1, di,i+1 and ci,i+1 be the speed, distance and
cost respectively from i to i + 1, and vconst be the constant speed being considered
for smoothing. Let vmin be the slowest speed at which the ship can actually travel,
used to calculate minimum fuel cost, since if a ship is scheduled to travel below this
speed, it actually travels at vmin and waits. Let s and e respectively be the start and
end waypoints for the route segment being considered for smoothing, and let vs and
ve be the speeds immediately before and after waypoints s and e respectively. Let Wi
be the set of allowable sailing windows for waypoint i. Let outside_windows(t, Wi)
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Algorithm 6 MW-RSA Smoothing

s = 0
e = 2
while s < N − 1 and e < N do

if vs 6= ve then
Step 1: Check if travelling at constant speed for subroute s to e is feasible

(i.e. times are within windows).
smooth_speeds = True
t′s = ts

vconst =
∑i∈[e,s−1] di,i+1

te−ts
for i = s + 1 to e do

t′i = t′i−1 +
di−1,i
vconst

if outside_windows(t′i, Wi) then
smooth_speeds = False

end if
end for
if smooth_speeds then

Step 2a: Times are feasible. Set constant speed for subroute s to e.
for i = s + 1 to e do

ti = t′i
vi−i,i = vconst
ci−1,i = total_cost(vconst, vmin, di−1,i)

end for
e = e + 1

else
Step 2b: Times are infeasible. Move on to next section of the route.
s = s + 1
if e− s < 2 then

e = e + 1
end if

end if
else

Step 3: Speeds between waypoints s and e are already constant.
e = e + 1

end if
end while
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be a function that returns true iff t is outside the time windows in the set Wi.
The algorithm iteratively considers a subsection of the complete route with at

least 3 waypoints, where the speed in the first segment differs from the last. If trav-
elling at constant speed for the subsection being considered results in all times being
within windows, then speeds can be smoothed (adjusted to be constant). Otherwise,
the algorithm moves on to the next subsection along the route. The algorithm returns
the adjusted arrival times ti at each waypoint i, with corresponding updated speeds
vi,i+1 and costs ci,i+1 for each section of the route.

6.2.8 Optimality of RSA

Norstad, Fagerholt, and Laporte [2011] did not provide a proof of optimality for
their Recursive Smoothing Algorithm, though they did prove that for a monotonic
cost function (eg. one that only considers fuel usage), a constant speed between two
points was always lower cost than travelling parts of the route at different speeds.
We present here a proof of optimality of the single-window RSA; a discussion of the
optimality of the Multi-Window RSA is presented in the next section.

The fuel cost for travelling a distance d at speed v is defined by Equation (6.1),
fuel_cost(v, d) = k · d · v2, where k is a constant. Since v = d/t, the fuel cost
for travelling distance d1 in time t1 − x and distance d2 in time t2 + x is given by
Equation (6.10):

f (x) = k ·
d3

1
(t1 − x)2 + k · d3

2
(t2 + x)2 (6.10)

f (x) is convex within the interval x ∈ (−t2, t1), with the minimum point occur-
ring when d1/(t1 − x) = d2/(t2 + x), i.e. when the speed is constant.

Therefore, any optimal path between two points with fixed times only allows the
speed to change at waypoints, since for any path with a speed change between two
adjacent waypoints, a lower-cost path can be found by travelling at constant speed
for that leg. Likewise, any optimal path between two points with fixed times can
only allow the speed to change at waypoints which the ship passes at the edge of
the waypoint’s time window, since if the ship passes the waypoint in the middle
of a time window, the speed to and from adjacent waypoints can be adjusted to be
closer to constant, thus reducing the cost. Therefore any optimal path between two
points with fixed times consists of constant-speed segments between the edges of
time windows at waypoints.

Consider the RSA algorithm for a subroute between waypoints s and e, with
optimal times at s and e already known. Let p be the waypoint in this subroute with
the largest time window violation when travelling at constant speed v between the
fixed times at s and e. Let the nearest endpoint of the time window at p be at time t.
Let L be the line passing between points s and e at constant speed v, and let L′ be the
line passing through point p at time t with constant speed v, as shown in Figure 6.10.

Suppose an optimal path P exists which passes through point p at some other
point t′ within its time window. Since P is an optimal path, it can only change
direction at waypoints where it passes through the edge of a window. P is therefore
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Figure 6.10: Illustration for RSA proof of optimality.

Figure 6.11: Illustration for RSA proof of optimality – 2 cases.

a piecewise-linear continuous path from (s, ts) to (e, te). Since P starts and finishes
on the same side of L′, and passes through t′ which is on the other side of L′, it must
change direction on the side of L′ that contains t′. Since P can only change direction
at waypoints when it passes through the edge of the time window, there must exist
a waypoint q with time-window edge point u such that P passes through u and u is
on the same side of L as t′.

There are now two cases, as illustrated in Figure 6.11:

1. The time window for q lies on the same side of L′ as the time window for p. p is
the point with the largest time window violation, therefore both t′ and u must
lie on L′, so t′ = t and P passes through the nearest edge of the time window
of point p.

2. The time window for q lies on the opposite side of L′. Therefore the cost for P
can be decreased by having the path P pass through q closer to L′, so P is not
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the optimal path.

Therefore, if p is the point with the largest time window violation when travelling
at constant speed between two waypoints with fixed start and end times, then any
optimal path P must pass through p at the nearest feasible time t to the constant-
speed path. Therefore, since the optimal time at p is now fixed, the route s to e can
be split into two subroutes s to p and p to e, both of which have fixed optimal times at
the start and end. The optimal arrival times for intermediate waypoints along both
subroutes can therefore be found recursively. Therefore the Recursive Smoothing
Algorithm presented by Norstad, Fagerholt, and Laporte [2011] finds the optimal
solution.

6.2.9 Optimality of MW_RSA

Proving optimality for MW_RSA would be significantly more difficult than for the
single-window RSA algorithm; however, we discuss differences in the two problems
and how these affect optimality.

The Recursive Smoothing Algorithm presented by Norstad, Fagerholt, and La-
porte [2011] is optimal due to the monotonic cost function and the fact that there is
only one window for each waypoint. Neither of these is the case for Multi-Window
RSA; however, for any subroute where the arrival time at the start and end is fixed,
the cost function reduces to the fuel usage, since travel time is constant, so the cost
function becomes monotonic.

Therefore several key results from the RSA proof of optimality still hold for
MW_RSA:

1. For any path P between two waypoints with fixed times, the optimal path in
the absence of windows has constant speed.

2. Therefore, any optimal path P only changes speed at waypoints.

3. Therefore, any optimal path P between two points with fixed times only changes
speed at waypoints which the ship passes at the edge of one of the time win-
dows.

4. Therefore, any optimal path P between two points with fixed times consists of
constant-speed segments between the edges of time windows at waypoints.

5. Therefore, any optimal path P between two points s and e with a fixed time at
s but not e consists of constant-speed segments between the edges of time win-
dows at waypoints, except for the final waypoint, e, where the arrival time can
be in the middle of the waypoint if and only if the ship travels at its minimum-
cost speed Vopt for the final leg of the route.

6. Given a subroute between two points s and e with fixed times, let v be the
constant speed between those points. Let p be the point with the largest time
window violation on one side of the line L passing through s and e at constant
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speed v, with t being the edge of the nearest time window on that side of L at
point p. Then any optimal path P between points s and e never crosses the line
L′ which passes through p at time t with constant speed v. (P can touch the
line L′, but not cross it.

7. The above result also holds for a subroute between points s and e where the
time at e is not fixed, but lines L and L′ have the constant speed Vopt, which is
the minimal-cost speed for the ship.

For the single-window RSA, the last three results above led to the conclusion that
for a point p which has the largest time window violation on one side of L, any
optimal path P will pass through p at the nearest feasible time t at the edge of its
window. However, for MW_RSA, there is another option – an optimal path P can
also pass through point p during a time window on the opposite side of L. This is
why MW_RSA needs to check both the time window before and after the optimal
time for the waypoints with the largest time window violation on either side of L,
instead of only one time point as with the single-window RSA.

Also, if the optimal path P passes through a waypoint p on the opposite side from
the window that is furthest away from L, then there is no guarantee that P passes
through the edge of the time window. One of the paths P′ explored by MW_RSA will
pass through the same time window edges as some optimal path P, but P′ may also
make some unnecessary speed changes to pass through the edge points of some time
windows where a lower-cost path would pass through the middle. This is why the
MW_RSA algorithm described in Section 6.2.6 needs the additional smoothing step
at the end to remove any unnecessary changes in speed, as described in Section 6.2.7.

6.2.10 Scalability of Multi-Window RSA

The MW_RSA algorithm has two branch points: the choice of waypoint to split the
route on, and the time window chosen at that waypoint. This clearly makes the al-
gorithm exponential in the number of waypoints; however, many branches can be
pruned during the search, since some subroutes will turn out to be infeasible. If a
subroute requires the ship to sail faster than its maximum speed, then that combina-
tion of waypoint and time window does not need to be explored further.

We consider the worst-case number of subroutes explored for any given number
of waypoints, and compare this worst-case against the MW_RSA average perfor-
mance on a set of problems.

Let f (n) be the worst-case number of subroutes explored by MW_RSA for a route
with n waypoints and with a fixed time at the final waypoint, and let g(n) similarly
specify the worst-case number of subroutes for n waypoints with the final time not
fixed. We can immediately observe that f (2) = 1, since for a route with 2 waypoints,
if the arrival time at the final waypoint is fixed, there is only one route to explore.
Likewise, g(2) = 2, since if the time at the final waypoint is not fixed, then the
optimal arrival time at the final waypoint may fall between two windows, requiring
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2 time windows to be considered, but there are no intermediate waypoints that we
may need to split the route on.

For a closed-ended route with 3 waypoints, f (3) = 2 · [ f (2) + f (2)] = 4, since
we have only one waypoint that the route may be split on, but we need to consider
adjusting the time at that waypoint to both the previous and next window. After
splitting the route, we will also need to run MW_RSA again for both of the resulting
subroutes with 2 waypoints.

For an open-ended route, g(3) = 2 · [ f (2) + g(2)] + 2 · f (3) = 14, since there
are 2 possible waypoints to consider for splitting, and the waypoint with the largest
time window violation before the optimal arrival time and the largest time window
violation after the optimal time may differ. For both ways of splitting the route, we
need to consider adjusting the time to both the previous and next window at that
waypoint. Splitting on the intermediate waypoint results in a closed-ended route
with 2 waypoints and an open-ended route with 2 waypoints. Splitting on the final
waypoint results in one closed-ended route with 3 waypoints. Finally, after splitting
the route, we need to run RSA again for all new subroutes.

For a closed-ended route with 4 waypoints, f (4) = 2 · 2 · [ f (2) + f (3)] = 20, since
we have 2 possible waypoints to split on, each with 2 possible windows, and both
possible splits result in one closed-ended 2-waypoint route and one closed-ended
3-waypoint route.

For closed-ended routes with more than 4 waypoints, we can see that f (n) =
2 · 2 · [ f (2) + f (n − 1)] = 4 + 4 f (n − 1), since f (n) increases exponentially, so the
worst-case split will always be the one that produces one 2-waypoint route, and one
route with n− 1 waypoints.

For an open-ended route with 4 waypoints, g(4) = 2 · [ f (2) + g(3) + f (4)] =
70, the two worst-case waypoints for splitting are the first and last waypoints that
haven’t already had their times set. These two waypoints continue to be worst-case
for splitting for open-ended routes with more than 4 waypoints, which can be proved
by induction, so for an open-ended route with more than 4 waypoints, we can see
that g(n) = 2 · [ f (2) + g(n− 1) + f (n)] = 2 + 2 · g(n− 1) + 2 · f (n).

The recurrence relation for f (n) can be solved to find that the worst-case number
of subroutes explored by MW_RSA for a closed-ended route with n waypoints is
defined by:

f (n) =
4n−1 − 1

3
− 1 (6.11)

Similarly, the recurrence relation for g(n) can be solved to find that the worst-
case number of subroutes explored by MW_RSA for an open-ended route with n
waypoints is defined by:

g(n) =
4n − 1

3
− 2n + 1 (6.12)

This worst-case behaviour occurs if the waypoints with the largest time window
violations are always different and always at the edges of the route; the optimal time
for each node is outside the time windows at each waypoint; and both the previous
and next time windows result in feasible routes at each waypoint for each subroute.
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N Worst case Average Worst case over 8 ships
4 70 8.05 51
8 21,590 206 1,349
12 5.59 x 106 1,114 7,821
16 1.43 · 109 5,553 29,213

Table 6.1: RSA: worst-case number of speed optimisation calculations vs. average
over 8 ships x 20 drafts vs. worst-case seen over 8 ships x 20 drafts.

Shortest Path Time Discretisations MW_RSA
N 20 40 60 80 100 –
4 0.64 2.41 5.57 9.97 16.2 0.02
8 1.06 4.02 8.38 15.0 24.8 0.62
12 1.29 4.72 10.3 18.8 30.8 4.96
16 1.67 6.11 13.1 24.0 40.0 29.1

Table 6.2: Calculation time in seconds for optimising speeds for 8 ships x 20 drafts,
for MW_RSA vs Shortest Path approach.

For the largest problem instance with 16 waypoints, the worst case number of speed
optimisations is: 416−1

3 − 216 + 1 = 1.43 · 109. However, in practice the average number
of speed optimisations calculated is much smaller, since some nodes will have the
optimal time fall within a time window, and some time windows will result in an
infeasible problem for one of the subroutes, so no further calculations will be done
for that time window.

Table 6.1 shows the worst-case number of speed optimisations calculated for
problem instances with 4, 8, 12 and 16 waypoints, as well as the actual number of
speed optimisations averaged over 8 ships with different maximum speeds, and with
20 drafts each. This shows that, for realistic sized problems, the average-case num-
ber of speed optimisations calculated is small enough that the problem is tractable.
In fact, for problems of 4 – 12 waypoints, the Recursive Smoothing Algorithm finds
optimal speeds faster than the reasonably accurate shortest path approaches (60, 80
and 100 time discretisations) even with the exponential growth in calculation time
with problem size. Table 6.2 compares the times taken to optimise speeds using the
shortest path approach vs. MW_RSA for 8 ships with 20 drafts each, with 4, 8, 12
and 16 waypoints.

Note that, while the shortest path approach is faster to calculate for the largest
problems, it suffers from producing lower quality solutions due to discretisation er-
ror. Solution quality comparisons between MW_RSA and the shortest path approach
are presented in Table 6.4 of Section 6.3.

The final smoothing step advances either the start or end of the smoothing win-
dow at each step, and considers each waypoint within the window once at each step.
The smoothing step is thus O(n2) worst-case complexity where n is the number of
waypoints, which is insignificant compared to the worst-case complexity of the rest
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of the algorithm.

Other algorithms and speedup approaches may also be worth investigating for
solving the Speed Optimisation Problem with multiple time windows, for example
dynamic programming could be used to avoid re-calculating results for the same sub-
routes in MW_RSA, which may provide a way to convert MW_RSA to an algorithm
that is both polynomial and optimal. Further investigation of approaches for solving
the single-ship fixed-route Speed Optimisation Problem is left for future work.

6.3 One Ship with Variable Draft

This section extends the Speed Optimisation Problem with Time-Varying Draft (SOPTVD)
for a single ship travelling through several draft-constrained waypoints to also choose
an optimal draft for the ship. To find an optimal draft and speed for a single ship, the
draft range for the ship is discretised, and either the shortest path method or Multi-
Window Recursive Smoothing Algorithm (MW_RSA)is used to optimise speeds be-
tween waypoints for each discrete draft. The time windows at each waypoint are
wider for lower drafts, which allows a greater range of speeds to be used for trav-
elling between waypoints, thus allowing speeds with a lower total fuel cost to be
used.

The total cost for each discretised draft is then calculated by subtracting a cost
savings factor for carrying more cargo than the minimum draft from the optimal fuel
cost for the speed-optimised route for that draft. Finally, the draft with the lowest
combined cost for each ship is selected. This algorithm for solving the Speed and
Draft Optimisation Problem with Time-Varying Draft (SDOPTVD) for a single ship
is described by Algorithm 7.

Let d0 to dN be the discretised draft values, and let M be the number of legs of
the voyage with distances Dj. Let Wi be the set of time windows at each waypoint
for draft di. Let speed_opt be an algorithm for finding optimal speeds {V0, ..., VM−1}
between waypoints given the set of time windows Wi at each waypoint. Note that
the optimal speeds will also depend on the speed range and cost function for the
ship; however, these do not vary with draft. Let Vmin be the minimum speed for the
ship, used to calculate the minimum fuel cost for each leg.

total_cost and cost_savings are specified by Equations (6.2) and (6.3) in Sec-
tions 6.1.1 and 6.1.2 respectively. Algorithm 7 returns the minimum cost Cmin and
the optimal draft dopt for this ship, as well as the optimal speeds {V0, ..., VM−1} for
that draft.

The sum of the minimal costs for a set of ships with variable drafts but with no
interaction between ships at waypoints can be used as a lower bound on the cost of
the Multi-Ship Speed Optimisation Problem with Time-Varying Draft (MS-SOPTVD)
with resource conflicts between ships at waypoints, presented in the next section.
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Algorithm 7 Solve_SDOPTVD: Solving the Speed and Draft Optimisation Problem
with Time-Varying Draft (SDOPTVD) for one ship

Cmin = bignum

dopt = 0
for i = 0 to N − 1 do
{V0, ..., VM−1} = speed_opt(Wi)
C = ∑j∈[0,M−1] total_cost(Vj, Vmin, Dj)
S = cost_savings(di)
if C− S < Cmin then

Cmin = C− S
dopt = di

end if
end for

6.3.1 Problem Instances

Algorithm 7 was used to calculate optimal drafts and speeds for 8 ships, with con-
structed voyages containing 4, 8, 12 and 16 waypoints. The distances between way-
points for the 4-waypoint voyage are similar to the real-world scenario of transport-
ing bauxite ore from the mines at Weipa through the Torres Strait to the refinery at
Gladstone, shown in Figure 6.2. Each longer voyage adds 4 more waypoints to this
scenario. The distances between waypoints for the 16-waypoint voyage are shown in
Table 6.3.

The 8 ships and 4 routes makes a combined total of 32 problem instances. The
ships had maximum drafts of 12.0 to 12.2 metres, and varying minimum and maxi-
mum speeds ranging from 5 to 7 knots for minimum speeds, and 14 to 17 knots for
maximum speeds. The minimum draft was 10.5 metres for each ship, with 20 draft
discretisations calculated. Ships were allowed to wait at waypoints, so in practice
there was no minimum duration for travel between waypoints, even though each
ship had a minimum speed below which the fuel usage function would not continue
to decrease.

The maximum allowable draft at waypoints was modelled as a sine function, with
the difference between high tide and low tide varying from 2.5m (spring tide) to 1.1m
(neap tide). Each waypoint used the same maximum draft function, but offset in time
and tide height by several hours and up to 0.5m.

Each ship also had different earliest and latest arrival and departure windows at
the origin and destination of the voyage, in addition to the windows at waypoints
caused by the height of the tide.

The shipping cost per tonne for the voyage, used to calculate cost savings for
draft above the minimum, was estimated as US$2.5 for the shortest voyage with 4
waypoints, and scaled linearly by distance for the longer voyages. The $2.5 figure
was the approximate cost per tonne of the average of the costs for a speed-optimised
round-trip 4-waypoint voyage for a Panamax bulk carrier transporting 70,000 tonnes
of cargo for the first half of the voyage, and sailing empty for the second half.
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Waypoint Distance to Next
1 170
2 30
3 1080
4 50
5 30
6 140
7 950
8 220
9 40
10 50
11 30
12 300
13 20
14 20
15 500

Table 6.3: Distances between waypoints for 16-waypoint route, in nautical miles.

6.3.2 Experimental Results

Algorithms for solving the shortest path problem with discretised arrival times, as
well as the recursive smoothing algorithm were implemented in Python. The shortest
path approach was run with 20, 40, 60, 80 and 100 arrival time discretisations. All
calculations were run on a Windows 7 machine with an Intel i7-930 quad-core 2.80
GHz processor and 12.0 GB RAM.

MW_RSA vs Shortest Path
Table 6.4 compares the costs of the optimal solutions found by the recursive smooth-

ing algorithm against solutions found by the shortest path approach with 20, 40, 60,
80 and 100 arrival time discretisations. This shows that, while the shortest path ap-
proach can find close to optimal solutions, particularly with a large number of time
discretisations, the recursive smoothing algorithm still produces some improvement
in results for longer routes.

20 time discretisations is clearly insufficient for long routes of 12-16 waypoints
– the shortest path approach with 20 time discretisations results in costs that are
around 25% higher than MW_RSA for these routes. For 60 or more time discretisa-
tions, on the other hand, the results produced by MW_RSA are only slightly better
than the shortest path results.

Shipping Costs vs Opportunity Cost
Figure 6.12 shows the minimum sailing cost and under-loading opportunity costs

(cost of carrying less cargo) for a range of discretised drafts for an example vessel.
This shows that sailing with the maximum possible draft increases the combined cost,
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Shortest Path Time Discretisations
20 40 60 80 100

N Cost Increase over MW_RSA (%)
4 0.54 0.54 0.54 0.53 0.53
8 5.94 2.55 0.94 0.18 0.25
12 26.66 6.79 2.72 1.44 1.04
16 25.29 5.86 2.91 2.00 1.31

Table 6.4: Percentage by which Shortest Path cost with 20, 40, 60, 80 and 100 arrival
time discretisations exceeds RSA cost, averaged over 8 ships.

Figure 6.12: Minimum voyage cost and opportunity cost for 20 discretised draft
values.
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Time Windows for Unconstrained Draft
4 hrs 6 hrs 8 hrs 10 hrs 12 hrs

N Cost Improvement (%)
4 1.53 4.55 12.29 26.18 32.10
8 2.31 4.64 7.02 21.49 28.17
12 2.49 4.77 7.13 21.74 28.47
16 2.74 4.74 6.79 19.96 26.14

Table 6.5: Percentage cost improvement of optimal draft vs. unconstrained draft,
using RSA for speed optimisation, averaged over 8 ships.

since sailing with the maximum draft results in very narrow time windows at each
waypoint, forcing the ship to sail with a higher speed to reach the draft-constrained
waypoints within the allowable time windows, thus resulting in higher fuel costs.

On the other hand, sailing with a very low draft does not reduce fuel costs sig-
nificantly beyond a certain point, as the time windows at waypoints become wide
enough that further reductions in draft do not improve fuel consumption enough to
offset the opportunity cost lost by sailing with an under-loaded ship. From the cost
example in Figure 6.12, it is clear that there is a financial benefit to considering both
draft and speed in the cost optimisation of cargo ship routes, rather than optimising
speeds and draft constraints separately.

Optimal Draft vs Unconstrained Draft
Table 6.5 presents the improvement in cost resulting from using the optimal draft

for each ship for the 4, 8, 12 and 16-waypoint routes, by comparing against the opti-
mal cost for "unconstrained" ship drafts – drafts that are low enough to get windows
of at least 4, 6, 8, 10 and 12 hours at each waypoint. The tides in this simulation
are diurnal, with a 24-hour time difference between successive high tides, so sailing
windows of at least 6 hours results in a ship being able to sail at least 25% of the
time.

The cost improvement of using the optimal draft is small compared to the opti-
mal speed for a fixed draft which gets 4-hour windows; however, the cost difference
increases significantly for less tightly constrained drafts. A ship with an "uncon-
strained" draft that has minimum 12-hour windows at each waypoint (ie. a ship
that can sail without waiting at least 50% of the time) has 30% higher shipping costs
(mainly due to under-loading) compared to a ship sailing with optimal draft.

Tables 6.5 compares the costs of the optimal speeds for the optimal draft against
a less constrained draft; however, the optimal speeds for both drafts are calculated
with the allowable sailing windows at each waypoint taken into account.

In Table 6.6, on the other hand, we compare the optimal costs found by consider-
ing time-varying draft constraints in speed optimisation against a speed optimisation
model that ignores draft constraints, leading to ships sometimes being scheduled to
sail through a draft-constrained waypoint at low tide and having to wait for the tide
to rise. This situation may occur if a speed optimisation model that does not include
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N Cost Improvement (%)
4 16.98
8 21.12
12 25.24
16 25.90

Table 6.6: Percentage reduction in cost of considering draft constraints in speed op-
timisation vs. ignoring draft windows in speed optimisation and waiting when ship

arrives outside the windows, for same (optimal) draft. Averaged over 8 ships.

N Cost Improvement (%)
4 15.64
8 10.65
12 9.84
16 11.47

Table 6.7: Percentage reduction in cost of considering draft constraints in speed op-
timisation vs. ignoring draft windows in speed optimisation and waiting when ship
arrives outside the windows, for same (optimal) draft, when ships do not sail faster

to catch up. Averaged over 8 ships.

draft constraints is used to optimise sailing speeds for a ship over a route where
some waypoints are draft-constrained. The costs in Table 6.6 are calculated for the
same draft (the optimal draft found by our approach), with and without considering
draft constraints.

Table 6.6 shows that for the optimal draft, the costs of ignoring draft constraints in
speed optimisation and waiting for the high tide range from 17% to 26% for different
routes.

When draft constraints are not considered in speed optimisation, ships wait upon
arrival at the waypoint if the tide is not high enough, and then sail faster afterwards
to catch up. We also investigated an alternative method of dealing with waiting for
the high tide, where ships continued sailing at the optimal, pre-calculated speed,
even though they were running late. The cost improvement of considering draft
against the waiting cost calculated using this method ranged from 9% to 16% for the
different routes, and are shown in Table 6.7.

The highest cost increases for waiting using this method were incurred by the
most tightly constrained waypoints, since a ship is more likely to arrive outside
the windows for a tightly-constrained waypoint, and is thus going to have longer
waiting times on average at more tightly-constrained waypoints. This explains why
the 4-waypoint route has the highest cost increase for waiting when no catchups
were permitted – one of the most tightly constrained waypoints is on the 4-waypoint
route, whereas the 8- and 12-waypoint routes in particular have many waypoints that
are less tightly constrained.

Note that the cost increase here is only due to the increased duration that the
ship is in use. We do not consider any cost penalties for arriving late, whereas in
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Time Windows for Draft
2 hrs 4 hrs 6 hrs 8 hrs 10 hrs 12 hrs

N Cost Improvement (%)
4 18.75 9.06 7.66 5.47 0.00 0.00
8 33.26 11.03 10.31 9.37 1.38 0.00

12 34.65 14.45 12.59 11.73 3.76 1.87
16 33.79 13.93 12.27 11.54 4.27 2.33

Table 6.8: Cost improvement of considering draft restrictions in speed optimisation
vs. ignoring draft restrictions and waiting, for a ship with fixed drafts with different

minimum time windows at waypoints. Averaged over 8 ships.

practice, there may be financial penalties for late delivery when ships have to wait at
waypoints for the tide to rise without sailing faster afterwards to catch up. The more
costly method of ships sailing faster to make up for having to wait for a high tide is
thus more realistic, as this method avoids late arrival penalties.

The differences in cost between the optimal speeds with and without considering
draft constraints also vary for different drafts. Table 6.8 shows the cost improvements
for using a speed optimisation approach with time-varying draft restrictions vs. a
speed optimisation approach that ignores draft windows for ships with a range of
fixed drafts, and allows ships to sail faster to catch up if they miss the high tide. The
results of both methods are compared for ships fixed drafts that have windows of 2 to
12 hours around the high tide. The benefit of considering draft restrictions in speed
optimisation decreases for less constrained drafts, until there is very little benefit in
considering draft windows for a draft that gets minimum 12-hour windows at each
waypoint.

A draft that gets minimum 12-hour windows has at least 50% chance of not
having to wait at all when arriving at any given waypoint (assuming all waypoints
have diurnal tides, ie. approximately one high tide every 24 hours). Some waypoints
may have even wider windows, as the 12-hour minimum windows occur at even the
most tightly constrained waypoints. In the 4- and 8-ship routes, a ship with a draft
that gets 12-hour windows at all waypoints does not have to wait at all when sailing
with optimal speeds calculated without draft restrictions. However, for all other
routes and all higher drafts, ships have to wait at some of the waypoints, resulting in
higher costs when draft restrictions were not considered in the speed optimisation.

Note that the 20 draft discretisations used for solving these problems introduce
a discretisation error, since the actual optimal draft may lie between two discretised
values. The next section shows that this discretisation error can increase shipping
cost by up to 2% for some problems. Since increasing the number of draft discretisa-
tions would only result in a linear increase in calculation time, we recommend that
discretising the draft at every centimetre be used in future, rather than discretising
drafts at a more coarse resolution. (A finer draft resolution than 1cm is not worth
calculating, since it is impractical to load a ship with such precision.)
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6.4 Multiple Ships with Variable Draft

To optimise speeds for multiple ships sailing through draft-constrained waypoints,
we also need to consider resource conflicts between ships at waypoints due to mul-
tiple ships trying to sail through a narrow waterway at the same time. This problem
is very similar to the CP model for the Bulk Port Cargo Throughput Optimisation
Problem introduced in Chapter 3 to minimise costs while meeting draft restrictions
and resource constraints at each waypoint. This section combines the BPCTOP CP
model with the single-ship Speed Optimisation Problem to create a new Multi-Ship
Speed Optimisation Problem with Time-Varying Draft (MS-SOPTVD).

6.4.1 Waypoint Cost Optimisation CP Model

In this chapter, we use a simplified version of the BPCTOP Constraint Programming
model from Chapter 3. This simplified model has no constraints on the availability
of tugs, and it does not consider resource conflicts with (empty) inbound ships at the
origin port. The objective function is also replaced by a function that minimises the
total cost, including speed-dependent fuel costs for travelling to and from adjacent
waypoints, instead of maximising the cargo carried on the set of ships as was done
in the original model.

Let U be the set of all vessels to be scheduled, indexed by v. Let [1, Tmax] be
the range of allowable time indices for this waypoint. Each ship has an associated
earliest departure time E(v), and a maximum allowable sailing draft D(v, t) at each
time t. Each ship also has an associated cost at each time C(v, t), which combines the
travel cost to and from adjacent waypoints with the cost savings due to the allowable
draft at this time being above the minimum.

Each ordered pair of ships vi, vj ∈ U also has a minimum separation time
ST(vi, vj) specifying the minimum delay required between their sailing slots. Let
s(v) be a binary decision variable specifying whether each ship v is included in the
schedule (since some ships may not be able to be scheduled), and let Q be a large
cost penalty for a ship not being included in the schedule. Let T(v) ∈ [1, Tmax] be the
decision variable specifying the scheduled sailing time for each vessel v.

Note that while ships are not allowed to overtake each other at waypoints, they
may pass each other between waypoints, so the order of ship sailing times may
change from waypoint to waypoint. Also, in this problem ships are all travelling
in the same direction; however, waypoint resource conflicts with ships travelling in
the opposite direction could be implemented by incorporating the different delays
into the sequence-dependent separation times, similarly to the way incoming and
outgoing ships are handled in the BPCTOP in Chapter 3.

The cost optimisation problem for a set of ships at a waypoint with time-varying
draft constraints can now be formulated as follows:

minimise ∑
v∈U

s(v) · C(v, t) + (1− s(v)) ·Q (6.13)
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subject to

s(v) = 1⇒ T(v) ≥ E(v), ∀ v ∈ U (6.14)

s(vi) = 1 ∧ s(vj) = 1⇒ (6.15)

T(vj)− T(vi) ≥ ST(vi, vj) ∨
T(vi)− T(vj) ≥ ST(vj, vi),

∀ vi, vj ∈ U, vi 6= vj

The objective function (6.13) minimises the cost for this set of ships at this way-
point. Equation (6.14) specifies the earliest departure time for each vessel. Equa-
tion (6.15) ensures that there is sufficient separation time between successive ships to
meet safety requirements.

6.4.2 Solving the MS-SOPTVD

The above formulation for the waypoint optimisation problem with time-varying
draft constraints can be combined with the mathematical formulation for the Speed
Optimisation Problem presented by Fagerholt, Laporte, and Norstad [2010] to cre-
ate a mathematical model for the combined Multi-Ship Speed Optimisation Problem
with Time-Varying Draft. However, the methods for solving the subproblem investi-
gated in Chapter 4 become infeasible for problem sizes larger than around 16 ships,
and would therefore be unable to solve realistic-sized instances of the MS-SOPTVD
with resource conflicts at all waypoints considered at once.

Since the draft varies rapidly with time, the cost function in the waypoint opti-
misation subproblem needs to be modelled with a 5-minute time discretisation to
ensure accurate costs for different drafts around the high tide. The speed optimisa-
tion part of the MS-SOPTVD, on the other hand, can result in long time horizons as
the time taken to travel between waypoints can vary by several days for slow vs fast
ship speeds. The 16-waypoint example problem has a maximum 30 day duration for
the total voyage, which would result in very large domains for each ship’s arrival
time at each waypoint.

Also, the cost optimisation at each waypoint affects the range of valid times for
each ship at adjacent waypoints, as well as the range of valid times for other ships
at the same waypoint. The number of choice points in the resulting combined MS-
SOPTVD model is thus around nWaypoints times the number of choice points for
the single-port optimisation subproblem with the same number of ships.

All of these factors would make a complete CP model for the MS-SOPTVD infea-
sible. We therefore have to find alternative ways of solving the MS-SOPTVD.

The optimal solution to the single-ship Speed Optimisation Problem with fixed
draft provides a lower bound on the cost for a set of ships with the same draft. Note
that this approach to solving the Speed Optimisation Problem with Time-Varying
Draft is not optimal, since the drafts are discretised, which results in an error that
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depends on the number of discretisations.
We solve the MS-SOPTVD by first solving the SOPTVD with discretised drafts

for individual ships, ignoring resource constraints at waypoints. Our algorithm then
calculates the travel costs and cost reduction for draft for each ship for 5-minute
increments around the optimal arrival time at each waypoint, based on travel speeds
to and from adjacent waypoints as well as the maximum allowable sailing draft for
that ship at that time. This results in a cost function for each ship to use as input to
the waypoint optimisation problem. Optimal speeds are then calculated for all ships
at each waypoint by solving the CP model from Chapter 3 using the optimisation
approaches investigated in Chapter 4, resulting in speeds that are close to optimal,
and that result in no conflicts between ships at waypoints. Multiple iterations of this
approach can be used to improve the combined schedule for the set of ships.

The algorithm for solving the MS-SOPTVD is described by Algorithm 8. Let U be
the set of vessels indexed by v, and let the waypoints along the route be indexed by
p = 0, ..., P, with Dp being the distance from waypoint p− 1 to p. Let d0(v) to dN(v)
be the discretised draft values for vessel v. Let Solve_SDOPTDV be Algorithm 7
used to find optimal speeds {V1(v), ..., VP(v)} for a single ship v with optimal draft
dopt(v).

Let Vmax(v) be the maximum possible speed for ship v, and Vmin(v) be the min-
imum speed, used to calculate minimum fuel cost. Let Wi(v) be the set of time
windows at each waypoint for vessel v with draft i. Let Tstart(v) be the earliest time
at which ship v can start sailing from the first waypoint. Let S(vi, vj, p) be the mini-
mum separation time between ships vi, vj at waypoint p, sailing in that order. Each
waypoint may also have an earliest and latest sailing time E(v, p), L(v, p) specified at
that waypoint for each ship.

total_cost and cost_savings are specified by Equations (6.2) and (6.3) in Sec-
tions 6.1.1 and 6.1.2 respectively. wp_opt is the algorithm used to optimise costs for
a single draft-constrained waypoint, subject to separation time constraints, using the
CP model described in Section 6.4.1.

Algorithm 8 returns the optimal draft dopt(v) for each ship v, as well as the opti-
mal times Tp(v) for each ship v at each waypoint p, and the optimal speeds between
waypoints Vp(v). The algorithm also returns the total shipping cost Ctotal(v) for each
ship, minus cost savings for draft above the minimum.

6.4.3 Potential Algorithm Improvements

Time Blocks of Ships
There are a number of improvements that can be made to Algorithm 8. First of all,

when calculating optimal speeds for individual ships to solve the single-ship Speed
Optimisation Problem, the most efficient speed will be similar for similar ships. As
ships sailing with a deep draft need to sail close to the high tide, the resulting sched-
ules have ships clumped together on high tides, possibly separated by ship speed.

Ships sailing on separate high tides are far enough apart that separation time
constraints at waypoints do not need to be considered. This effect of ships clumping
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Algorithm 8 Solve_MS-SOPTDV: Solving the Multi-Ship Speed Optimisation Prob-
lem with Time-Varying Draft

Step 1: Calculate optimal speeds and arrival times at waypoints for each ship,
ignoring resource conflicts at waypoints.
for v ∈ U do

dopt(v), {V1(v), ..., VP(v)} = Solve_SOPTDV(Wi(v), D1..DP, d0(v)..dN(v))
T0(v) = Tstart(v)
for p ∈ [0, P] do

Tp(v) = Tp−1(v) +
Dp
Vp

end for
end for
for p ∈ [0, P] do

Step 2: Get time range of ship arrivals at each waypoint, and extend time range
if ships are too close together.

Tmin(p) = minv∈U Tp(v)
Tmax(p) = maxv∈U Tp(v)
Smax(p) = (|U| − 1) ·maxvi ,vj∈U S(vi, vj, p)
if Tmax(p)− Tmin(p) < Smax(p) then

Sdi f f (p) = Smax(p)− (Tmax(p)− Tmin(p))
Tmax(p) = Tmax(p) + Sdi f f (p)
Tmin(p) = Tmin(p)− Sdi f f (p)

end if
end for
Continued on next page.
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for p ∈ [0, P] do
for v ∈ U do

Step 3: Calculate cost function for each ship at each time, including speed
before and after, as well as cost savings for the maximum draft able to sail at
that time. For infeasible times (when the ship can’t sail even with minimum
draft, or times that would require speeds above the maximum between adjacent
waypoints) set the cost to bignum.

for t ∈ [Tmin(p), Tmax(p)] do
Step 3a: Calculate shipping cost to and from adjacent waypoints.
C(v, t) = 0
if p 6= 0 then

Vbe f ore =
Dp

t−Tp−1(v)

C(v, t) = C(v, t)+ total_cost(Vbe f ore, Vmin(v), Dp)
end if
if p 6= P then

Va f ter =
Dp+1

Tp+1(v)−t

C(v, t) = C(v, t)+ total_cost(Va f ter, Vmin(v), Dp+1)
end if
Step 3b: Adjust shipping cost to account for cost savings due to draft.
for i = 0 to N − 1 do

if t ∈Wi(v) and (t 3Wi+1(v) or i = N − 1) then
C(v, t) = C(v, t)− cost_savings(di(v))

end if
end for
Step 3c: Set cost function to bignum for infeasible times and speeds.
if t 6∈ W0(v) or t < E(v, p) or t > L(v, p) or Vbe f ore > Vmax(v) or

Va f ter > Vmax(v) then
C(v, t) = bignum

end if
end for

end for
Step 4: Optimise costs given separation time constraints and cost function.
Tp(v), dopt(p, v) = wp_opt(C(v ∈ U, t ∈ [Tmin(p), Tmax(p)]), S(vi, vj ∈ U, p))

end for
Step 5: Calculate optimal draft and speeds between waypoints for each ship, as
well as cost of resulting schedule.
for v ∈ U do

dopt(v) = minp∈[0,P]dopt(p, v)
Ctotal(v) = 0
for p ∈ [1, P] do

Vp(v) =
Dp

Tp(v)−Tp−1(v)

Ctotal(v) = Ctotal(v)+ total_cost(Vp(v), Vmin(v), Dp)
end for
Ctotal(v) = Ctotal(v)+ cost_savings(dopt(p, v))
dopt(v) = minp∈[0,P]dopt(p, v)

end for
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together at high tides thus allows the schedule to be broken up into non-interacting
time blocks for which the waypoint optimisation problem can be solved indepen-
dently, significantly speeding up the calculation time. This improvement has been
implemented, whereas the other two improvements below are suggestions for future
work.

Infeasible Waypoint Optimisation
The waypoint optimisation problem may be infeasible for some waypoints if the

single-ship speeds used as input to the waypoint optimisation problem are very close
to a ship’s maximum speed. If a ship travels close to its maximum speed both to and
from a waypoint, it may not be able to move its arrival time at that waypoint in either
direction without exceeding its maximum speed. Multiple ships travelling close to
maximum speed and arriving at the waypoint closer together than allowed by the
waypoint’s separation time constraint can make the waypoint optimisation problem
infeasible.

This does not occur in the problem instances considered in this chapter, as sail-
ing at maximum speed is costly, and thus rarely selected by the speed optimisation.
However, it may occur more frequently for problems that have very tight deadlines,
requiring ships to sail close to their maximum speed. This infeasibility can be re-
solved by calculating multiple sets of speeds using the Shortest Path approach, and
using alternative routes with slower speeds as a fallback option if required. How-
ever, for some problems, this may not be possible if the ship speeds are too tightly
constrained and only fast speeds result in arrival at the last waypoint before the
deadline.

Note that ships travelling slowly do not cause a similar infeasibility, since ships
may wait at waypoints, so there is no minimum speed constraining the waypoint
optimisation problem.

Global Optimisation
Algorithm 8 optimises speeds for each ship independently, then resolves conflicts

at waypoints. However, this may result in a suboptimal global schedule, since each
waypoint optimisation problem only affects the arrival time of the ships at one way-
point, whereas a globally optimal solution may require adjusting the times at several
waypoints for some ships. Global optimisation approaches for this problem is a large
potential area of future research.

6.4.4 Experimental Results

Schedules were calculated for problem instances containing 4, 6 and 8 ships, with
voyages containing 4, 8, 12 and 16 waypoints – a total of 12 problem instances. All
ships sail from the initial waypoint on the same high tide, as ships sailing on different
high tides from the initial waypoint are likely to remain on different high tides for the
entire voyage, and thus not cause resource conflicts at later waypoints. Modifying
any of these problem instances to consider the same number of ships sailing on the
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Number of ships
N 4 6 8
4 -2.09 -0.71 0.19
8 -0.61 0.08 5.20
12 0.38 3.66 2.95
16 0.39 3.24 6.66

Table 6.9: Percentage increase in cost for schedule with resource constraints at way-
points vs. lower bound ignoring resource conflicts computed with RSA.

same fixed route over multiple high tides will only make the problem less tightly
constrained and easier to solve.

The first waypoint is modelled as a port, with ships departing from berths at
different locations, and minimum separation times between ships that depend on
the order in which the ships sail. Minimum separation times at other waypoints are
independent of ship ordering, and range from 30 minutes or 1 hour.

Algorithm 8 was implemented in Python and solved using both the MW_RSA
and Shortest Path solutions to the single-ship Speed Optimisation Problem as input.
The waypoint optimisation subproblem was implemented in MiniZinc and solved
using the G12 FD solver.

Cost Increase vs Lower Bound
Table 6.9 shows the percentage cost increase of the schedule with resource conflicts

at waypoints against the lower bound cost computed by optimising the cost for each
ship using the Multi-Window Recursive Smoothing Algorithm, without considering
resource conflicts between ships at waypoints. For small numbers of ships and for
short routes, the cost increase is small.

Waypoint optimisation may even reduce costs, since the single-ship speed optimi-
sation algorithms only considers discretised drafts, whereas the multi-ship waypoint
optimisation calculates the maximum draft to the nearest centimetre every five min-
utes, which may result in a finer draft resolution, thus reducing the discretisation
error.

This reduction in discretisation error is what causes the negative "cost increase"
numbers in Table 6.9. Since increasing the number of draft discretisations only in-
creases calculation time linearly, it may be worth increasing the number of draft
discretisations from 20 to every centimetre to eliminate this source of error.

Shortest Path vs RSA
Table 6.10 presents the percentage cost increase of using 1-ship solutions calculated

using the Shortest Path approach with 60 time discretisations as input to the MS-
SOPTVD algorithm against 1-ship solutions calculated with MW_RSA. This shows
that the Recursive Smoothing Algorithm results in lower costs for many, but not all
problems.
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Number of ships
N 4 6 8
N Cost Increase (%) SP vs. RSA
4 -0.17 -0.30 -0.32
8 2.35 1.64 0.39
12 3.64 0.03 1.34
16 3.60 0.88 -1.58

Table 6.10: Percentage cost increase for MS-SOPTVD with initial 1-ship solutions
calculated using 60-time-discretisation Shortest Path vs. RSA.

Number of ships
4 6 8

N Cost Improvement (%)
4 16.45 13.15 15.01
8 9.04 12.22 9.69
12 9.02 10.54 11.08
16 7.60 9.61 10.21

Table 6.11: Percentage reduction in cost caused by considering resource conflicts
at waypoints, rather than optimising speeds for individual ships using RSA, and

waiting at waypoints in the event of resource conflicts.

One possible reason for the Shortest Path approach sometimes finding better com-
bined solutions is that schedules computed for different ships have more variation
with the Shortest Path approach than MW_RSA, since the Shortest Path approach
introduces a time discretisation error which may vary for different ships. This re-
sults in ships sailing further apart on schedules computed using the Shortest Path
approach compared to MW_RSA. The Shortest Path schedules spread ships out over
multiple high tides, resulting in ships being able to sail with higher drafts due to
having fewer resource conflicts with other ships. This theory is supported by the fact
that schedules computed using the Shortest Path approach result in ships being split
into more time blocks on average than schedules computed using MW_RSA.

Cost Improvement of Considering Multiple Ships
Table 6.11 shows the percentage reduction in cost caused by considering resource

conflicts between ships at waypoints, rather than optimising speeds for individual
ships and having ships wait in the event of multiple ships arriving at a waypoint at
once.

As expected, cost improvements are greatest for problems with more ships, as
more resource conflicts arise. However, in the examples we considered, the cost
improvement is also highest for the shortest route, since the most tightly constrained
waypoint occurred on this route, resulting in ships having to wait for longer time
periods. Longer routes had many under-constrained waypoints where ships only
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Time Windows for Draft
2 hrs 4 hrs 6 hrs 8 hrs 10 hrs 12 hrs

N Cost Improvement (%)
4 26.84 17.82 18.62 21.89 29.72 35.14
8 34.04 20.03 20.09 19.72 23.17 28.39
12 36.52 25.58 25.23 24.80 26.93 31.80
16 34.05 23.37 22.79 22.57 24.53 28.71

Table 6.12: Percentage reduction in cost for 8-ship problems caused by considering
draft constraints and resource conflicts at waypoints vs. ignoring draft windows in
speed optimisation for drafts with different minimum time windows at waypoints.

Averaged over 8 ships.

had to wait for a very short time, resulting in lower percentage cost increases.
The results in Table 6.11 clearly show that optimising schedules for individual

ships, even with consideration of time-varying draft constraints, is insufficient when
there are 4 or more ships sailing along the same route at the same time, since there
is a significant cost to not considering interactions between multiple ships arriving
at waypoints simultaneously.

Cost Improvement vs. Ignoring Draft Constraints
Table 6.12 compares the cost of the schedules computed by Algorithm 8 with time-

varying draft constraints and resource conflicts and waypoints against the cost of
calculating optimal speeds without considering draft constraints, sailing with un-
constrained drafts, and waiting at waypoints in the event of arrival outside the draft
windows, or in the event of multiple ships arriving close together.

These results show that considering draft constraints and resource conflicts at
waypoints when calculating optimal sailing speeds may reduce costs by up to 40% for
8 ships sailing along the same route. This shows that incorporating draft constraints
and resource constraints at waypoints into the ship speed optimisation problem may
have significant economic benefits for routes with multiple draft-constrained way-
points.

6.5 Routing and Speed Optimisation

6.5.1 Problem Description

Norstad, Fagerholt, and Laporte [2011] presented the Tramp Ship Routing and Schedul-
ing Problem with Speed Optimisation (TSRSPSO) and used the single-ship Speed
Optimisation Problem as a subproblem in the local search approach used to solve it.

This section extends the TSRSPSO with time-varying draft restrictions to form the
Routing and Scheduling Problem with Speed Optimisation and Time-Varying Draft
(RSPSOTVD), and uses a similar approach to Norstad, Fagerholt, and Laporte [2011]
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to solve this problem, with the Speed Optimisation Problem with Time-Varying Draft
(SOPTVD) being used as a subproblem instead of the SOP.

The RSPSOTVD has the following features. Items 1 and 3-6 are repeated from the
problem description for the SOPTVD problem description in Section 6.2.1.

1. Let S be a set of ships, each with a range of possible drafts and speeds, and a
cargo capacity per centimetre of draft within the allowable range.

2. Let P be a set of ports, each of which is primarily an import or export port. Each
ship is assumed to be able to dock at every port, subject to draft constraints.

3. Each port and waypoint has time-dependent draft constraints that vary with
tide, waves, current, and other environmental conditions.

4. Draft constraints can be converted to multiple time windows for each possible
ship draft. These time windows may vary with ship draft (if they are entirely
dependent on draft constraints) or may be static, for example if the earliest
arrival time at the destination is determined by needing to have enough storage
space to unload the ship’s cargo.

5. Loading and unloading time at ports are ignored, similarly to Fagerholt, La-
porte, and Norstad [2010]. However, ships may wait at waypoints if required,
to ensure that minimum speeds do not make time windows infeasible.

6. At each port and waypoint, there may be a minimum separation time between
ships, to avoid ships sailing too close together in a narrow draft-restricted wa-
terway.

7. Let C be a set of cargoes, each with a corresponding origin and destination port,
as well as pickup and delivery windows, total tonnage, and revenue per tonne.
Each cargo is assumed to be transportable on every ship, subject to capacity
and draft constraints. Cargoes may need to be split over several ships; each
ship can only carry one type of cargo at any given time.

8. The route from the origin to the destination port for each cargo may travel past
a number of waypoints. Both ports and waypoints have time-varying draft
constraints.

9. The objective is to maximise the total profit: the sum of the revenues for deliv-
ered cargoes, minus the sum of the total costs.

A similar method to Norstad, Fagerholt, and Laporte [2011] is used to solve
the RSPSOTVD. This approach solves the routing problem using a multi-start lo-
cal search heuristic, which generates a number of initial solutions, then iteratively
improves them by applying several local search operators. Whenever an operator is
applied, the route for any affected ship is re-evaluated by solving the corresponding
Speed Optimisation Problem. The method investigated in this chapter extends the
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approach presented by Norstad, Fagerholt, and Laporte [2011] by considering time-
varying draft restrictions in the Speed Optimisation Problem for each ship’s route,
and by considering resource conflicts at waypoints for ships sailing past the same
waypoint within a short time window.

6.5.2 Our Approach

The Tramp Ship Routing and Scheduling Problem with Speed Optimisation (TSR-
SPSO) was solved by Norstad, Fagerholt, and Laporte [2011] using a multi-start local
search heuristic, which generates a number of initial solutions, then iteratively im-
proves them by applying several local search operators. Whenever an operator is
applied, the route for any affected ship is re-evaluated by solving the correspond-
ing Speed Optimisation Problem. This section extends their approach by solving the
Speed Optimisation Problem with Time-Varying Draft (SOPTVD) instead for each
ship’s route, and by considering resource conflicts at waypoints for ships sailing past
the same waypoint within a short time window.

The SOPTVD considers time-varying restrictions on draft, but a fixed draft still
needs to be chosen in order to calculate how much cargo is carried on each ship. The
algorithm presented in this chapter only considers fixed drafts which give each ship
2-hour windows at each waypoint, since this was found to be close to the optimal
draft in experiments with the SOPTVD and MS-SOPTVD presented earlier in this
chapter. Extending the algorithm to attempt to add extra cargo to ships if there is
any cargo left unscheduled is a possible avenue for future work.

Speeds only need to be calculated for ships that have been modified by the op-
erator, and speed optimisation results are cached to avoid redundant calculations.
Schedules are also checked for feasibility before performing speed optimisation, by
ensuring that there is enough time for all cargoes to be picked up and delivered
within their allowable windows, assuming ships sail at their maximum speed.

After a combined schedule for all ships is calculated, the algorithm identifies
conflicts at waypoints by finding any ships that are scheduled to arrive at the same
waypoint closer together than the minimum separation time at that waypoint. Each
waypoint conflict is then resolved by solving a Waypoint Cost Optimisation Problem
for ships at that waypoint that are in conflict with each other.

The algorithm ignores loading and unloading times, similarly to Fagerholt, La-
porte, and Norstad [2010] and Norstad, Fagerholt, and Laporte [2011]. Including
consideration of loading and unloading times for our problem would be slightly
more complex than for the problems presented by these authors, since ships would
participate in waypoint conflicts during both arrival and departure; however, this
could be implemented similarly to the way incoming and outgoing ships are han-
dled in the BPCTOP in Chapter 3, with each ship being involved in two different
Waypoint Cost Optimisation Problems, with different sequence-dependent separa-
tion times, to take into account different separation times between incoming and
outgoing ships. Berth allocation may also need to be taken into account; however,
an initial simplification may be to consider all berths as identical, so there are only
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four different sequence-dependent separation times that need to be considered: in-
coming followed by incoming, outgoing followed by outgoing, incoming followed by
outgoing, and vice versa.

The local search starts by generating a number of initial solutions by assigning
some cargoes to random ships, then adding the remaining cargoes to the ship that can
deliver them at minimum cost. After initial solutions are generated, these solutions
are then improved by iteratively applying a number of local search operators:

1. One_Resequence: move one cargo assigned to ship v to the best time in the
schedule of ship v.

2. Reassign: move one cargo to the best time in the schedule of the best ship.

3. Two_Interchange: swap two cargoes between ships u and v, to the best times
in their schedules.

4. Two_Resequence: move two cargoes assigned to ship v to the best times in the
schedule of ship v

5. Three_Interchange: Swap three cargoes between three ships to the best times
in their schedules.

For more details on the local search heuristic, including discussions of ratios of
random to optimal cargoes in the initial solutions, frequency of applying each local
search operator, etc. see Norstad, Fagerholt, and Laporte [2011] and Brønmo et al.
[2007].

6.5.3 Resolving Conflicts at Waypoints

Our approach to resolving conflicts at waypoints only considers one waypoint at a
time, and only affects adjacent legs in the ship’s route. This approach is suboptimal,
and results could be improved by a global solution that affects a larger amount of
the schedule; however, this first attempt at considering conflicts at waypoints is still
preferable to ignoring waypoint conflicts entirely and having ships wait for each
other when arriving at a waypoint too close together.

To resolve a waypoint conflict, a Waypoint Cost Optimisation Problem (WCOP)
is created for ships participating in the conflict. This problem is a simplified version
of the Bulk Port Cargo Throughput Optimisation Problem (BPCTOP) presented in
Chapter 3, which maximises cargo throughput at a port, subject to time-varying
draft restrictions, minimum separation time constraints, and other constraints such
as constraints on tugs, which may apply at some ports. To convert this problem to a
Waypoint Cost Optimisation Problem (WCOP), we maximise profit instead of cargo
throughput, where profit is calculated based on the revenue per tonne of cargo,
as well as the cost of travel to adjacent waypoints. The WCOP is formulated as a
Constraint Programming model, presented below.

Let U be the set of vessels to be scheduled, indexed by v. Let [1, Tmax] be the
range of discretised time indices. Each vessel v has an earliest departure time E(v),
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and a profit function P(v, t) which specifies the profit for vessel v at each time t,
where P(v, t) is 0 for any times t when the ship v cannot sail. ST(vi, vj) specifies the
minimum separation time between the sailing times of every ordered pair of ships
vi, vj ∈ U. The binary decision variable s(v) specifies whether ship v is included in
the schedule. Let T(v) ∈ [1, Tmax] be the decision variable specifying the scheduled
sailing time for vessel v. The binary variable sb(vi, vj) – SailsBefore(vi, vj) – is true iff
vessel vi sails earlier than vessel vj, defined by Eq. (6.16).

sb(vi, vj) = 1↔ (T(vi) < T(vj) ∧ sb(vj, vi) = 0), (6.16)

∀ vi, vj ∈ U; vi 6= vj

The model for the Waypoint Cost Optimisation Problem is formulated as follows:

maximise ∑
v∈U

s(v) · P(v, T(v)) (6.17)

s. t. s(v) = 1⇒ T(v) ≥ E(v), ∀ v ∈ U (6.18)

sb(vi, vi) = 0, ∀ vi ∈ U (6.19)

s(vi) = 1 ∧ s(vj) = 1⇒ (6.20)

(sb(vi, vj) = 1⇒ T(vj)− T(vi) ≥ ST(vi, vj)),

∀ vi, vj ∈ U

The objective function (6.17) maximises the total profit for the set of ships. Con-
straint (6.18) specifies the earliest departure time for each vessel. Equation (6.19)
specifies that no ship sails before itself. Equation (6.20) ensures that there is sufficient
separation time between every pair of successive ships to meet safety requirements
at waypoints.

We create a Waypoint Cost Optimisation Problem for each waypoint conflict, and
solve it to find times for each ship that maximise the profit for travelling between
adjacent waypoints. We then adjust the speeds between adjacent waypoints, and the
arrival time at the affected waypoint, to create a schedule that resolves the conflict.

In a possible future extension to this algorithm, the profit function could also
take into account the ability to load extra cargo onto ships by moving some ships
to times where the allowable draft at the waypoint is higher. This would allow
the WCOP to improve the solution to the overall schedule by loading extra cargo
onto ships that have extra capacity. However, this presents some difficulties, since
this would affect the available sailing windows at neighbouring waypoints, possibly
making the scheduled sailing times infeasible, so for the moment we have not allowed
the Waypoint Cost Optimisation Problem to load extra cargo onto ships above the
draft with 2-hour windows originally scheduled. This improvement would be worth
investigating in future work.
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The profit function is defined by Equation (6.21),

P(v, t) = revenue([D(v, t)− Dempty(v)] · C(v)) (6.21)

−fuel_cost(Vprev(v, t), Vmin(v), dprev)

−fuel_cost(Vnext(v, t), Vmin(v), dnext)

∀ v ∈ V, t ∈ T

Where D(v, t) is the maximum allowable draft for vessel v at this waypoint at time
t, Dempty(v) is the draft for vessel v sailing empty, C(v) is the tonnage per centimetre
of draft for vessel v, Vprev(v, t) and Vnext(v, t) are the speeds that vessel v must sail
at for the previous and next legs respectively in order to arrive at this waypoint at
time t, and dprev and dnext are respectively the distances of the next and previous legs
on this ship’s route. fuel_cost(V, Vmin, d) is defined by Equation (6.1) in Section 6.1.1,
where Vmin(v) is the minimum speed for ship v, used to calculate minimum fuel cost.

Limitations
One limitation of this approach is that it does not yet consider variable drafts for

each ship for each segment of each route. All five methods compared in this section
fix the draft for each pickup-delivery voyage for each ship by initially finding the
draft that gets at least 2-hour windows at every high tide for every waypoint along
the route, and then increasing the draft by up to 20cm, as long as the draft still gets
at least some windows at all waypoints along the route. In practice, this results in
waypoints still having many windows for each ship, since 2-hour windows for every
high tide would include neap tides, when the high tide is significantly lower than
average.

This is a significant limitation, since this algorithm only considers one draft for
each ship and each cargo, whereas it may be possible for the ship to sail with more
cargo if there is sufficient tide height at waypoints, or it may be possible for ships
to sail with lower speed if the draft were decreased to increase the available sailing
windows. Since allowing variable draft would affect the routing problem by reducing
or increasing the amount of cargo available for other ships, finding optimal drafts for
each cargo is a significant challenge, and is left for future work.

6.5.4 Experimental Results

The local search heuristic was implemented in Python and solved using the RSA
algorithm for the speed optimisation for individual ships. The WCOP was imple-
mented in MiniZinc and solved using the G12 FD solver. For ships that were not in
conflict, a Python script was used to choose locally optimal point of the profit func-
tion for each waypoint. The same parameter settings were used for the multi-start
local search heuristic as those found by Brønmo et al. [2007] to find the best routing
solutions. All experimental tests were performed on an Intel i7-930 quad-core 2.80
GHz processor and 12.0 GB RAM.
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Routing Method
MaxSpd ServiceSpd Waiting Draft WpOpt

NCargoes (actual) 10 9 9 9 9
Unassigned Cargo (tonnes) 7580 25660 0 0 0

Revenue ($) 2509473 2429891 2547500 2547500 2547500
Cost ($) 1092919 931496 817119 741429 739518
Profit ($) 1416554 1498394 1730380 1806070 1807981

% Profit Diff vs ServiceSpd -5.46 0 15.48 20.53 20.66

Table 6.13: Comparing different approaches for the instance with 4 multi-ship car-
goes, 4 ships and a 4-port map.

Problem instances were generated using 4 constructed maps with 4, 8, 12 and 16
ports. Ports were randomly assigned as either import or export ports, and sets of 5,
10, 15 or 20 cargoes were automatically generated, with random origins, destinations,
and realistic but randomly varying tonnages and revenues. The fleet contains 4, 8,
12 or 16 ships, of realistic sizes, but with randomly generated starting locations,
and with a small amount of random variation in fuel usage and maximum speed.
Cargoes are generally larger than the capacity of a ship, and therefore need to be
split across several ships, with possibilities for cost optimisation by splitting cargoes
so as to reduce unused ship capacity. The planning horizon varies from 10 to 160
days, depending on the number of ships and cargoes. Cargo pickup and delivery
windows are chosen randomly based on the size of the planning horizon and the
size of the cargo. There are 64 problem instances in total.

Several different solution strategies are compared to evaluate the impact of tak-
ing time-varying draft constraints and conflicts at waypoints into account in a ship
routing problem with speed optimisation. Each problem was solved with each of the
following methods, with 10 random restarts of the local neighbourhood search.

1. Waiting: optimise speeds ignoring draft constraints, and have ships wait for
draft windows to open and for other ships to sail upon arrival at waypoints.

2. MaxSpd: all ships sail at their maximum speed, and wait for draft windows to
open upon arrival at waypoints.

3. ServiceSpd: all ships sail at their service speed (3 knots below their maximum
speed), and wait for draft windows to open upon arrival at waypoints.

4. Draft: optimise speeds with draft constraints taken into account, but ignore
waypoint conflicts, and have ships wait for each other at waypoints if required.

5. WpOpt: routing with speed optimisation, draft constraints and waypoint con-
flict resolution.

Detailed Results for One Problem
Table 6.13 presents a detailed analysis of revenue, cost and profit for one problem
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with a 4-port map, 4 ships, and 4 multi-ship cargoes (each cargo needs to be split
over several ships). This problem was solved with all five methods.

The results show that, as expected, optimising speeds results in significantly re-
duced costs and higher profit compared to both the fixed-speed methods, MaxSpd

and ServiceSpd. Among the methods that optimise speeds, considering draft con-
straints (Draft) also significantly improves results compared to optimising speeds
while ignoring draft constraints and waiting for the high tide (Waiting). However,
this improvement is not as high as that obtained by optimising speeds in the first
place, possibly because the methods that use speed optimisation (Waiting, Draft

and WpOpt) all converge on the same routing solution with the same cargoes loaded
on the same ships, only the sailing speeds of the ships differ.

The fixed-speed methods not only have higher fuel costs, they also fail to load
some cargoes. Note that NCargoes refers to the number of loads carried; the problem
itself contains 4 cargoes which are larger than one ship load, so they each need to be
split up among several ships. The MaxSpeed method finds a solution where ships
carry 10 cargo loads, but a small amount of cargo is left unassigned. This may be
because in order to fit the last small amount of cargo onto a ship, an earlier load
of this cargo would need to be carried by the largest available ship, which also has
a higher fuel usage, and is therefore more expensive at maximum speed. All other
methods schedule ships to sail with a lower speed, which makes it cost-effective to
have this cargo carried by the larger ship. In the case of the ServiceSpd method, one
cargo gets left behind possibly because ships need to sail fast in order to deliver this
cargo within the time windows, and ships sailing at service speeds are unable to fit
this cargo into the schedule.

The details of what routes and cargo assignments are chosen by each schedule
are clearly affected by the random variation in ship sizes and fuel usage constants in
our generated data set. It would therefore be very interesting to test this algorithm
on an industrial data set in future. However, the more general conclusion that can
be drawn from these results is that the increased flexibility arising from using speed
optimisation rather than fixed speeds results in a better choice of routes and cargo
assignments, and that considering draft restrictions explicitly in speed optimisation
significantly reduces the fuel usage and total cost.

The improvement obtained by considering waypoint conflicts is extremely small
compared to both the improvement obtained by optimising speeds, and by consider-
ing draft constraints. There are few waypoint conflicts in this problem, so the benefit
from considering waypoint conflicts is small. All routing problem instances had
fewer waypoint conflicts and fewer ships participating in each conflict on average
than the previous problem, since ships start out at different locations and are much
less likely to arrive at any waypoint at the same time. Cargoes being randomly allo-
cated to ports is likely to result in fewer waypoint conflicts than would occur in a real
problem, since in reality, cargo origins and destinations are not evenly distributed.
In Australia, for example, the top five bulk export ports – Port Hedland, Dampier,
Newcastle, Hay Point and Gladstone – account for over 80% of total export tonnage,
with the 40+ smaller ports contributing less than 20% [Ports Australia, 2012].
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Routing Method
MaxSpd Waiting Draft WpOpt

NCargoes % Profit Diff vs ServiceSpd

5 -8.36 8.96 15.67 17.70
10 -9.91 14.98 18.61 23.72
15 -9.40 17.83 29.11 30.80
20 -10.36 19.63 26.95 27.30
All -9.51 15.34 22.59 24.34

Table 6.14: Average percentage difference in profit for different strategies, compared
against sailing at service speed, averaged over 16 problem instances for each number

of cargoes.

Speed Optimisation
Table 6.14 presents the percentage increase in profit of each approach compared to

sailing at service speed. The percentage increase in profit is presented for problems
with 5, 10, 15 and 20 large multi-ship cargoes, averaged across 16 instances of each
problem with 4, 8, 12 and 16 ships, and using the 4, 8, 12, and 16-port maps.

As found by Norstad, Fagerholt, and Laporte [2011], sailing at maximum speed
(MaxSpd) reduces performance compared to sailing at service speed (ServiceSpd).
All methods that optimise speeds perform significantly better on average compared
to fixed-speed approaches. Even when draft constraints are ignored and ships wait
for the high tide (Waiting), this still improves profit by 15.34% on average compared
with sailing at the fixed service speed and waiting for high tides.

Draft Constraints
The Draft method – optimising speeds with draft constraints taken into account,

but ignoring waypoint conflicts – performs significantly better than all of the Service-
Spd, MaxSpd and Waiting methods. The improvement over sailing at service speed
is 22.59% on average, compared with the 15.34% improvement found by optimis-
ing speeds without considering draft. This is similar to the improvement observed
for the fixed-route speed optimisation problem with time-varying draft constraints,
compared to ignoring draft constraints and waiting for ships with draft windows of
around 4 hours. It is clear that considering draft constraints in speed optimisation
can lead to significant reduction in costs for draft-constrained ships, due to reducing
the waiting time required, and reducing fuel costs due to ships not needing to sail
faster to catch up after waiting for a high tide.

Waypoint Constraints
By contrast, the improvement provided by considering waypoint constraints is

much smaller for the combined routing and scheduling problem than was previously
observed for the fixed-route speed optimisation problem. For the WpOpt approach to
the combined routing and scheduling problem, we observe only a 2% improvement
on average over the Draft approach of considering draft constraints and ignoring
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waypoint conflicts, as compared to the approximately 11% average for the fixed-route
problems investigated earlier. In a combined routing and scheduling problem, ships
arriving at waypoints at the same time is much less likely than for several ships
travelling along the same route starting at the same time, so there are much fewer
conflicts, and their impact on the schedule is less significant. Because waypoint
optimisation is also the slowest part of the calculation, a good enough tradeoff of
schedule quality vs. calculation speed may be found by applying draft constraints
alone, without considering waypoint conflicts.

6.6 Summary

This chapter introduced time-varying draft restrictions and resource conflicts be-
tween ships at waypoint into two new problems – the Speed Optimisation Problem
(SOP) for a fixed ship travelling along a fixed route, and the Tramp Ship Routing and
Scheduling Problem with Speed Optimisation (TSRSPSO) initially solved by Norstad,
Fagerholt, and Laporte [2011].

For a set of ships travelling along a fixed route with draft-constrained waypoints,
consideration of draft and resource constraints was found to significantly reduce
shipping costs compared to ignoring draft constraints in scheduling and waiting
upon arrival at waypoints if required. For the routing and scheduling problem,
speed optimisation with draft constraints improved the resulting schedules by an
average of about 22% compared to the traditional method of sailing at a fixed service
speed. By comparison, the method presented by Norstad, Fagerholt, and Laporte
[2011] of speed optimisation without draft constraints produced an improvement
of 15% compared to sailing at service speed. Considering waypoint conflicts only
produced a small additional improvement of about 2% on top of considering draft
constraints, since there were much fewer conflicts in the routing problem compared
to the problem of several ships sailing along the same route.

This chapter, along with the three preceding chapters, have clearly shown that
there is a large potential benefit of considering time-varying restrictions on ship draft
in maritime transportation optimisation problems which involve draft-constrained
ports and waterways. However, the introduction of these time-varying draft restric-
tions significantly increases the complexity of the problem. Time-varying action costs
are found in other problems both in the maritime industry and beyond, so the fol-
lowing chapter looks beyond maritime transportation problems with time-varying
draft, and investigates how problems in other fields deal with time-varying action
costs, and what generalisations can be drawn from these approaches.
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Chapter 7

Generalisation: Scheduling with
Time-Varying Action Costs

7.1 Introduction

A key feature of maritime transportation problems involving time-varying restric-
tions on ship draft, such as the Bulk Port Cargo Throughput Optimisation Problem
(BPCTOP) investigated in Chapters 3, 4 and 5, as well as the problems with speed op-
timisation and time-varying draft restrictions investigated in Chapter 6, is that these
problems have an objective that is a sum of time-varying costs or values for each task.
This objective function increases the size and complexity of these problems, making
them more challenging to solve; however, problems with similar objective functions
have been investigated in related fields, so there may be scope for generalisation of
approaches between these problems. Section 7.2 reviews a number of scheduling
and routing problems with time-varying action costs from outside the field of mar-
itime transportation, and discusses techniques which may be generalisable between
applications.

Typical approaches to solving these types of problems include Mixed Integer Pro-
gramming (MIP) and local search, or more complex solve-and-improve approaches,
which find an initial solution for a simplified problem and improve it using the objec-
tive function and constraints of the full problem. However, Constraint Programming
(CP) solvers have been found to be faster than MIP for some problems, including the
BPCTOP as discussed in Chapter 4. CP is also a very flexible method that can be
used to model a wider variety of constraints than MIP, which is limited to linear con-
straints. A number of recent approaches have combined CP with other techniques
such as large neighbourhood search for vehicle routing [Kilby and Verden, 2011],
SAT [Ohrimenko, Stuckey, and Codish, 2009] and MIP [Achterberg, 2009] in order to
combine the flexibility of CP with fast algorithms for specific problems.

CP approaches may therefore be worth investigating for other problems that have
traditionally been modelled with MIP. This chapter compares CP vs MIP for another
problem with time-varying action costs in maritime transportation – the Liner Ship-
ping Fleet Repositioning Problem (LSFRP). This chapter also investigates the effec-
tiveness of Lazy Clause Generation (LCG) [Ohrimenko, Stuckey, and Codish, 2009],
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discussed in Chapter 2, for both the BPCTOP and the LSFRP, as LCG was found to be
more effective than traditional finite domain CP solvers on a number of scheduling
problems [Schutt et al., 2012; Feydy and Stuckey, 2009].

When faced with a new problem with time-dependent task costs, or when trying
to add such costs to an existing problem, it is not clear which approaches will yield
good results. This chapter aims to provide guidance for researchers and practition-
ers dealing with problems with such costs. This is done through an investigation of
several key problems in the literature and the introduction of models for two mar-
itime transportation problems. To this end, this chapter contains the following novel
components: (1) a review of methods for solving problems with time-dependent task
costs, (2) a CP model of the LSFRP that outperforms all previous approaches, (3) a
comparison of LCG and solve-and-improve approaches on the LSFRP, (4) a solve-
and-improve approach for the BPCTOP, (5) and a vehicle routing based modeling of
the BPCTOP that finds high quality solutions even on large BPCTOP instances.

The work presented in this chapter is joint work with Kevin Tierney, who con-
ducted all the experiments on the LSFRP. Parts of this research have been published
in a joint conference paper [Kelareva, Tierney, and Kilby, 2013a] and a longer journal
paper containing all the work in this chapter has also been submitted for publica-
tion [Kelareva, Tierney, and Kilby, 2013b].

7.2 Problems with Time-Varying Action Costs

This section presents a review of a number of scheduling and routing problems with
time-dependent action costs, including net present value maximization in project
scheduling [Russell, 1970] and satellite imaging scheduling [Lin et al., 2005; Wolfe
and Sorensen, 2000]. This section also reviews approaches that have been used to
solve these problems. Approaches used to deal with time-varying action costs in
problems introduced earlier in this thesis are also summarised, including vehicle
routing with soft time windows [Sexton and Choi, 1985; Figliozzi, 2012]; ship routing
and scheduling with soft time windows [Fagerholt, 2001; Christiansen and Fagerholt,
2002]; and ship speed optimisation [Fagerholt, Laporte, and Norstad, 2010; Norstad,
Fagerholt, and Laporte, 2011].

A variety of optimisation techniques exist for solving routing and scheduling
problems, but it is often unclear which technique will offer the best results given
a problem with time-dependent task costs. This section gives a detailed overview
of a range of approaches that are available in the literature before several of these
methods are investigated in further detail in the rest of this chapter. In doing so, this
chapter aims to provide some intuition into which methods perform best on different
types of time-dependent task cost problems.

Note that there are other problems besides the ones presented here where time-
dependent task costs are present, such as the airline disruption problem Rosenberger,
Johnson, and Nemhauser [2003]; Kohl et al. [2007], and the problem of optimisation
of electricity usage whether in the home (e.g., Agnetis et al. [2013]) or in a data
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center (e.g., Rao et al. [2010]). We have selected several key problems where a variety
of solution methods have been proposed. We use this information to try to draw
conclusions on which directions seem to be the most promising, however this section
is not intended to be an exhaustive review of all possible problems with time-varying
costs, since a very wide range of such problems exists.

7.2.1 Satellite Imaging Scheduling

One scheduling problem with time-dependent quality functions for each action is the
problem of satellite imaging scheduling, where the goal is to schedule a set of obser-
vations of an Earth observing satellite. Each observation may only be performed for
a specified period of time during the satellite’s orbit, and the quality of the observa-
tion drops off to zero for times before and after the peak quality window [Wolfe and
Sorensen, 2000]. A satellite scheduling problem also includes resource constraints, as
each satellite can only perform one observation at a time, and sequence-dependent
setup times, as different observations may require different orientations of the satel-
lite.

Satellite scheduling approaches handle the time-varying image quality objective
in a number of ways. One approach used by Yao et al. [2010] and Wang et al. [2007]
is to simplify the image quality function by converting it to hard time windows when
a "good enough" image could be obtained. This simplifies the problem significantly,
but does not account for the fact that images scheduled closer to the centre of the
time window will be of higher quality.

Another approach presented by Lin et al. [2005] is to first find a feasible solution
by decomposing the problem into independent subproblems using Lagrangian relax-
ation, and then to use heuristics to improve the solution quality by minor changes
in the schedule. This approach is suboptimal, but produces better quality solutions
than just using feasible time windows, with solutions being within 2% of optimality.

The quality functions in satellite imaging scheduling may be further complicated
by the fact that it is possible to partially satisfy an imaging request, by taking images
that cover only a portion of the requested area. The possibility of partial rewards
is handled by an objective function which gives the highest weighting to complete
requests, and only a low weighting to partial requests [Lemaître et al., 2002; Lin et
al., 2005].

Wolfe and Sorensen [2000] compared three algorithms for satellite imaging schedul-
ing with time-dependent task quality functions: priority dispatch, look ahead, and
genetic algorithms (GA). The priority dispatch approach also used a solve-and-improve
method, first building a schedule by allocating jobs in order of priority, then improv-
ing the schedule by adjusting job start and end times using a hill-climbing search
to improve schedule quality. The look ahead algorithm produced a 12% average
improvement in schedule quality over the priority dispatch algorithm, by using the
quality function earlier in the process, to allocate jobs immediately to the peak of
their quality window, rather than using the quality function only to improve the ini-
tial schedule. The GA approach produced further improvements in schedule quality,
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but at the expense of a significant reduction in speed.
Simplifying the quality function to hard time windows is the simplest and most

efficient approach for decreasing the solution time, but does not account for quality
at all. Improving the quality with small local changes to the schedule can produce
schedules that are within 2% of optimality, with only a small time cost [Lin et al.,
2005]. More complex quality optimisation approaches produce better schedules, but
with increasingly slower calculation times [Wolfe and Sorensen, 2000], and an ap-
proach that finds an exact optimal solution would introduce a much larger time cost.

Optimal approaches may be worthwhile for problems where even a small de-
viation from the optimum has a significant impact, such as the Bulk Port Cargo
Throughput Optimisation Problem (BPCTOP), but close-to-optimal approaches such
as that presented by Lin et al. [2005] suffice for applications such as satellite schedul-
ing where a small deviation from the optimum has less impact.

7.2.2 Project Scheduling with Net Present Value

Another scheduling problem with time-dependent action costs is the problem of
maximising the net present value (discounted cash flow) in project scheduling, first
introduced by Russell [1970]. In standard project scheduling, the objective is usually
to minimise makespan (total time). For the alternative objective of maximising net
present value, each activity has an associated positive or negative cash flow, which is
discounted over time according to a given discount rate.

Project scheduling may also include resource constraints and precedence con-
straints between actions. The objective function component for each action is mono-
tonic, unlike the satellite scheduling image quality function, which has a plateau of
peak quality, and drops off before and after.

The problem of maximising net present value in project scheduling without re-
source constraints can be solved in polynomial time by transforming to a linear pro-
gram [Grinold, 1972]. However, the resource-constrained project scheduling problem
with net present value (RCPSPNPV) is NP-complete.

The RCPSPNPV can be solved by relaxing the problem to remove resource con-
straints, and using the resource-unconstrained solution as an upper bound in the
search. A review of both the resource-constrained and unconstrained max-NPV
problem is presented by Vanhoucke, Demeulemeester, and Herroelen [1999].

Vanhoucke, Demeulemeester, and Herroelen [2001] solved the RCPSPNPV using
a depth-first branch-and-bound algorithm with the resource-unconstrained solution
as the upper bound. The search algorithm scheduled positive-cashflow activities as
early as possible in the process, and negative-cashflow activities as late as possible,
thus focussing the search on good quality solutions.

Another technique that has been used to solve this problem is CP with Lazy
Clause Generation (LCG), which combines constraint programming with learning
where the search has previously failed [Ohrimenko, Stuckey, and Codish, 2009].
LCG was found by Schutt et al. [2012] to be more efficient at solving this problem
than basic constraint programming. CP and LCG are very general approaches that
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can be used for any constrained optimisation problem, which makes CP and LCG
promising candidates for generalising to other scheduling or routing problems with
time-varying task costs.

7.2.3 Liner Shipping Fleet Repositioning

Another recently introduced scheduling and routing problem with time-varying ac-
tion costs in maritime transportation is the Liner Shipping Fleet Repositioning Prob-
lem (LSFRP) [Tierney et al., 2012a]. The LSFRP concerns itself with the repositioning
of container ships in a liner shipping network when routes in the network are added
or changed. The LSFRP was introduced in Chapter 2.

The LSFRP is a relatively new problem to the optimisation community, having
not been mentioned in any of the most comprehensive surveys of maritime re-
search [Christiansen et al., 2007, 2013; Christiansen, Fagerholt, and Ronen, 2004].

The LSFRP was first solved by Tierney et al. [2012a], who compared two plan-
ning approaches and a MIP model for solving the problem. First, the LSFRP was
modelled using PDDL 2.1, a modeling language for automated planning problems
(see Fox and Long [2003]), and solved using the popf planner [Coles et al., 2010b]. Al-
though popf found solutions, it could not solve the LSFRP to optimality. The authors
further introduced a MIP based on an activity-flow approach, in which the various
activities that can be undertaken by vessels are modeled as nodes, and arcs represent
which activities can be ordered after one another. The authors then introduced Lin-
ear Temporal Optimisation Planning (LTOP), which uses temporal planning to build
optimisation models, and solves these using an optimisation version of partial-order
planning based on branch-and-bound. LTOP outperformed both the traditional plan-
ning approach and the MIP on a limited dataset of instances.

Both LTOP and MIP were able to find optimal solutions for problem sizes with
up to three ships. These are realistic problem sizes similar to those used by shipping
lines. As with the BPCTOP, there is a high motivation to find the optimal solutions,
even if solving the problem to optimality is more difficult, since the cost of reposi-
tioning a single ship can be hundreds of thousands of dollars [Tierney et al., 2012a].

Tierney and Jensen [2012] and Tierney et al. [2013] solve a version of the LSFRP
including cargo flows, which the version we address in this paper lacks. In these two
papers, the authors sacrifice the flexibility of choosing amongst several phase-in and
phase-out opportunities in order to lower the overall problem size enough to include
cargo flows. Therefore the problem addressed in this chapter is an equally important,
parallel problem to the LSFRP with cargo flows. The version of the LSFRP presented
in this chapter is based on activities that avoid disrupting cargo flows, even though
they are not taken explicitly into account.

Note that the version of the LSFRP investigated in this thesis (as well as in the
above papers) includes restrictions on phase-in actions undertaken by vessels to en-
sure that vessels phase in to their goal service such that the liner shipping structure
of the service is maintained. To maintain the service structure, a periodic (usually
weekly) schedule must be created. To ensure this is the case, the models presented in
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this chapter require that vessels all phase-in to the same port in a sequential, week-
by-week fashion. This restriction could be relaxed in practice, which may be worth
investigating in future work. All papers on the LSFRP to date have this restriction,
with the exception of Tierney et al. [2013] and Tierney and Jensen [2011], which in-
terpret this restriction slightly differently – ships must phase in so as to arrive at a
given port on a given date, but they may phase in earlier in the service as long as
they arrive at the port on the specified date.

7.2.4 Routing and Scheduling with Soft Time Windows

Chapter 2 included a section on the Vehicle Routing Problem with Soft Time Win-
dows (VRPSTW), which involves time-varying action costs in the form of penalties
for early and late delivery of each cargo outside the customer’s preferred time win-
dow. Since both vehicle and ship routing and scheduling problems with soft time
windows were covered in Chapter 2, this section only summarises the types of cost
functions considered in each approach.

The VRPSTW has been extensively researched in the field of vehicle routing; how-
ever, soft time windows are comparatively rare in the ship routing and scheduling
literature. This section only gives a few examples of vehicle routing problems with
soft time windows. Many VRPSTWs include penalties for both early and late ar-
rival, for example Figliozzi [2010]; Fan et al. [2011]; Kilby and Verden [2011]. Others
only consider penalties for late delivery, eg. Qureshi, Taniguchi, and Yamada [2009].
Some approaches such as Figliozzi [2012] also consider time-varying travel times,
which can be used to model different travel times during peak hour or roads with
speed limits that vary by time of day.

In ship routing and scheduling, Fagerholt [2001] and Fagerholt [2000] compared
several different penalty functions for deliveries outside each customer’s preferred
time window, which modelled different real-world scenarios, e.g. when a customer
gets a fixed discount for a delivery outside the preferred time, or when the discount
depends on the lateness of the delivery. Halvorsen-Weare and Fagerholt [2013] con-
sidered soft time windows with penalties for both early and late delivery, to enforce
a "fairly evenly spread" requirement on a set of deliveries in a maritime inventory
routing problem. Karlaftis and Kepaptsoglou [2009] considered penalties for delay
only, so the cost function for each action was monotonic. Gatica and Miranda [2011]
considered a problem with hard time windows; however their approach could easily
be extended to model soft time windows with penalties for early and late delivery,
or late delivery only. Their network-based model would also be flexible enough to
model cost functions with more complex shapes, though the time discretisation used
in their network-based model would limit the accuracy with which cost functions
can be modelled.

Christiansen and Fagerholt [2002] considered penalties for ships arriving at port
close to weekends, to avoid the risk of long delays caused by some ports closing on
weekends, so the problem involved multiple time windows and had a penalty func-
tion which increased towards the end of each window. Ship routing and scheduling
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problems with speed optimisation, such as Norstad, Fagerholt, and Laporte [2011]
and the last problem investigated in Chapter 6 also have time-dependent costs for
each action, with the cost increasing with sailing speed.

The Bulk Port Cargo Throughput Optimisation Problem (BPCTOP) could also
be considered an instance of a ship scheduling problem with soft time windows –
the window of peak draft around high tide could be considered the preferred time
for each ship, with the draft function modelled as a non-linear penalty function
specifying the reduction in cargo amount carried if a ship sails before or after the
peak high tide window. The shape of the objective function in the BPCTOP is similar
to the quality function for satellite image scheduling, which is the inverse of the
cost function for the VRPSTW with penalties for both early and late arrival, since
the maximum draft for each ship peaks around high tide, and drops off before and
after. However, VRPSTW cost functions are usually modelled as linear outside the
preferred time window, whereas the cost function for the BPCTOP is more complex,
as it depends on the tide, waves and other environmental conditions, which are not
entirely linear, and can be quite complex at ports with complex interactions between
the waves, tide and currents.

As with satellite scheduling, the VRPSTW and BPCTOP involve a tradeoff be-
tween solution quality and scalability. For handling draft restrictions in maritime
optimisation problems, traditional ship scheduling techniques with constant draft
are the most scalable, but do not consider time variation in the allowable amount
of cargo. Ship scheduling with time windows, such as the approaches presented
by Fagerholt [2001] and Christiansen and Fagerholt [2002], could be used to consider
time windows of good enough" draft, at the cost of increased complexity. This would
allow ships to be scheduled even if they cannot sail at all phases of the tidal cycle.
However, this approach would still produce schedules with less than the maximum
loading for ships that are large enough to be able to load extra cargo to the peak of
the tide. The approaches presented in Chapter 4 produce the best quality schedules,
but make even a relatively simple problem at only one port quite complex to solve
to optimality. Since each extra centimetre of draft can increase the cargo carried on a
Capesize bulk carrier by 130 tonnes [Port Hedland Port Authority, 2011b], and there-
fore profit for the shipper by up to $10,000 [Curtis, 2012], there is a high incentive to
find optimal solutions.

7.2.5 Summary

Each of the problems we reviewed in this section involves time-dependent action
costs; however, other constraints as well as the shapes of these objective functions
vary between problems. Most problem types include resource constraints and setup
times between tasks; however, not all problems include sequence-dependent setup
times. Some problems such as ship and vehicle routing problems also include op-
tional tasks, whereas for other problems such as project scheduling, the set of tasks is
fixed. Finally, some of the problems also include routing constraints, whereas others
are purely scheduling problems. Table 7.1 summarises additional constraints and
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objective function shapes for problems reviewed in this chapter. Some of these pa-
pers were previously discussed in Chapter 2; however, this chapter focusses on their
handling of time-varying objectives and related constraints.

Some approaches to dealing with time-dependent action costs, such as Rakke et
al. [2011], involve simplifying the objective function by modelling it as constant over
time, or by reducing the time-varying action costs to hard "good enough" time win-
dows [Yao et al., 2010]. However, in this chapter, we will focus on approaches that do
consider time-dependent objectives, whether by optimising for the time-varying ob-
jective directly, such as the approaches used in Chapter 4 to solve the Bulk Cargo Port
Throughput Optimisation Problem (BPCTOP), or by solving a simplified constant-
time problem initially and then improving the solution with respect to the time-
varying objective, such as the approach investigated by Lin et al. [2005] for satellite
imaging scheduling.

The choice of an appropriate algorithm needs to be informed by how important
it is to get a good quality solution for the given application. In optimising the cargo
throughput for a bulk export port, problem sizes are small – there may only be
up to 10 ships sailing on a tide – but solution quality is very important, as every
centimetre of extra draft for a ship results in a $10,000 increase in profit. In the Liner
Shipping Fleet Repositioning Problem (LSFRP), varying the speed of a single vessel
can result in savings of tens or even hundreds of thousands of dollars. In satellite
image scheduling, however, problems sizes may be very large with thousands of tasks
to be scheduled [Wolfe and Sorensen, 2000], but the consequences of a suboptimal
solution may be less expensive, so a method that produces solutions within 2% of
optimality such as that presented by Lin et al. [2005] is sufficient.

As there are many similarities between scheduling and routing problems involv-
ing cost functions that are a sum of time-varying task costs, some techniques may be
generalisable from one problem type to others. The next three sections discuss tech-
niques that have been successfully used for one of the problem types discussed in
this section that may be generalisable to other problems, and apply these technique
to the BPCTOP and LSFRP.

7.3 LSFRP

This section presents a CP model for the Liner Shipping Fleet Repositioning Problem
(LSFRP), and compares it against the MIP and automated planning models intro-
duced by Tierney et al. [2012a] on a dataset of 39 instances based on data from
an industrial collaborator. This section begins with an overview of the previous
approaches, followed by the CP model and experimental results, showing that CP
greatly outperforms previous approaches. The LSFRP was described in detail in
Chapter 2, so the description of the problem is not repeated here.
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7.3.1 Automated Planning and LTOP

Automated planning is used to model problems where it is difficult to select and
sequence activities in order to achieve specific goals starting from an initial state.
Automated planning attempts to find a sequence of activities, which is generally a
subset of the overall set of activities, that modify a state representation such that
certain goals are achieved.

Activities are represented by actions that can only be applied in states that satisfy
their precondition. When applied, actions change a state, thus reassigning some of
the state variables representing the state. We refer the reader to Nau, Ghallab, and
Traverso [2004] for the details of automated planning. Automated planning offers
a distinct advantage over other modeling approaches in the way actions correspond
directly to real-world activities, making models easy to understand and interpret for
domain experts.

LTOP uses a type of automated planning called partial-order planning [Penberthy
and Weld, 1992] to build and search through optimization models that involve con-
tinuous time, metric quantities, and a complex mixture of action choices and order-
ing constraints. LTOP fundamentally diverges from classical automated planning
approaches by introducing two sets of modeling variables that decouple the plan-
ning problem from the optimization model. Thus, the optimization model is not
tightly bound to the semantics of actions. Actions are merely used as handles to
optimization components that are combined to complete optimization models using
partial-order planning. In other words, LTOP builds optimization models with the
help of automated planning, i.e., the focus of LTOP is on the optimization model of
a problem, whereas classical planning approaches include optimization components
within actions merely as a byproduct of the overall planning process.

LTOP is built on a state variable representation of propositional STRIPS plan-
ning [Fikes and Nilsson, 1971]. LTOP utilizes partial-order planning [Penberthy and
Weld, 1992], and extends it in several ways. First, an optimization model is associated
with each action in the planning domain. This allows for complex objectives and cost
interactions that are common in real world optimization problems to be easily mod-
eled. Second, instead of focusing on simply achieving feasibility, LTOP minimizes a
cost function. Finally, begin and end times can be associated with actions, making
them durative. Such actions can have variable durations that are coupled with a cost
function. We refer to Tierney et al. [2012a] for a formalization of the LTOP approach.

7.3.2 LSFRP LTOP Model

This section describes the LTOP model from Tierney et al. [2012a]; we refer readers
to Tierney et al. [2012b] for more details about the automated planning PDDL domain
that was compared against LTOP, since LTOP greatly outperforms this approach on
the LSFRP. The LTOP model consists of several core actions: phase-out, phase-in,
sail, sail-on-service, sail-with-equipment that are based around keeping track
of the state of each vessel being repositioned. A vessel can be in one of three states:
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initial, transit, or goal, which describe a vessel being on its initial service, performing
a repositioning, or having reached its goal service, respectively.

We create phase-out actions at every port call along each vessel’s initial service.
Phase-out actions may only be applied for a particular vessel when it is in its initial
state, meaning it has not yet begun its repositioning. Applying a phase-out action
transitions a vessel to a state of transit. Phase-in actions are created at each port on
the goal service in each week of the planning period. Vessels must be in a transit
state to use a phase-in action. The effect of a phase-in action indicates that a vessel
has reached the goal service, which satisfies the goal state of the model.

While a vessel is in transit (i.e., repositioning), it may use any sailing, SoS or
sail equipment action to move between ports. Sailing actions are created between
all ports in the model, except for sailings with phase-out ports as the destination,
as once a vessel leaves the phase-out service it is not allowed to go back. We create
SoS actions for each SoS specified by the repositioning coordinator, and equipment
sailing opportunities between all ports with equipment surpluses and those with
equipment demands.

Our actions describing sailing, SoS opportunities, and equipment sailings are du-
rative actions, meaning they take place over a time period that is specified through
the preconditions of the action. In the case of SoS actions, the amount of time they re-
quire is fixed based on the start port and end port of the action. However, sailing with
and without equipment has a variable duration that must be between the minimum
and maximum speed of a vessel. Phase-out and phase-in actions are instantaneous
actions that have no duration.

We model sailing costs by setting the fixed cost of sailing (and sailing with equip-
ment) actions to the maximum possible cost of sailing between two ports, i.e., sailing
at maximum speed. We then subtract an amount from the action cost based on the
duration of the sailing, meaning longer sailing subtract more from the cost, making
them cheaper.

Hotel costs, i.e. the fixed hourly cost of operating a vessel, are modeled by asso-
ciating each vessel with two optimization variables representing the begin and end
time of the hotel period for that vessel. The hotel period is constrained to be the
duration of the vessel between its phase-out and phase-in, minus the duration of any
SoS opportunities used. In this way, no extra actions are needed to model the hotel
cost, which is a key time-dependent task cost of the LSFRP. Each action that is added
to an LTOP plan updates the bounds of the hotel cost, assisting LTOP in its search
for the optimal solution.

All repositioning plans contain, at minimum, a phase-out and a phase-in action
for each vessel. Sailings, SoS opportunities, and sail equipment actions can be placed
between the phase-out and phase-in in order to bring the vessel to the goal service.

7.3.3 MIP Model

Tierney et al. [2012a] also presented a MIP model of the LSFRP and compared
it against LTOP, to investigate how LTOP performed against more traditional ap-
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proaches. The MIP model considers the activities that a vessel may undertake and
connects activities based on which ones can feasibly follow one another temporally.
The structure of the LSFRP is embedded directly into the graph of the MIP, meaning
that it is unable to model general automated planning problems as in Kautz and
Walser [1999] and Van Den Briel, Vossen, and Kambhampati [2005]. Note that, un-
like LTOP, the MIP is capable of handling negative activity costs. This MIP model is
summarised below.

Since the vessel state in fleet repositioning is relatively simple, encompassing
where a vessel is and whether it has begun its repositioning or not, there is not
an exponential growth in the number of graph nodes as there would be in many
planning problems if they were modeled using a graph.

Given a graph G = (A, T), where A is the set of actions (nodes), and T is the
set of transitions, with (a, b) ∈ T iff action b may follow action a, let the decision
variable ya,b ∈ {0, 1} indicate whether or not the transition (a, b) ∈ T is used or not.
The auxiliary variable wa = ∑(a,b)∈T ya,b indicates whether action a is chosen by the
model, and xs

a, xe
a ∈ R+ are action a’s start and end time, respectively. Finally, the

variables hs
v and he

v are the start and end time of the hotel cost period for vessel v.
Each action a ∈ A is associated with a fixed cost, ca ∈ R, a variable (hourly) cost,

αa ∈ R, and a minimum and maximum action duration, dmin
a and dmax

a . For some
actions a, there is a fixed time ta at which they must start, if they are performed.
The set of such actions is denoted by At ⊆ A. The use of a particular action may
exclude the use of other actions. These exclusions are specified by η : A → 2|A|.
There are also n sets of mutually exclusive actions, given by µ : {1, . . . , n} → 2|A|. We
differentiate between phase-out and phase-in actions for each vessel using the sets
Apo

v , Api
v ⊆ At, respectively, and let A′ = A \ ∪v∈V(Apo

v ∪ Api
v ) be all actions that are

not related to the phase-out or phase-in. Finally, let cH
v ∈ R+ represent each vessel’s

hourly hotel cost.
The upper bound on the difference between the end and start of two actions is

given by My
a,b. The upper bound on the start of a vessel’s hotel period, and the lower

bound on the end of the vessel’s hotel period, are given by Ms
v and me

v respectively.

Parameters We now summarize the parameters and variables used in our MIP
model for easy reference. The model uses the following parameters:

G = (A, T) Graph of nodes A (actions) and arcs T (transitions).
V Set of vessels.
Apo

v Set of phase-out actions for vessel v ∈ V.
Api

v Set of phase-in actions for vessel v ∈ V.
At Set of actions that can only start at fixed times.
ta Starting time of action a ∈ At.
ca Fixed cost of action a.
αa Variable cost of action a.
cH

v Hotel cost of vessel v ∈ V per hour.
dmin

a , dmax
a Minimum and maximum duration of action a.
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My
a,b Maximum time difference between the start of actions a and b.

Ms
v, me

v Upper and lower bound of the start and end of vessel v ∈ V’s
hotel period.

µ(a) Set of actions that are mutually exclusive with a.
η(a) Set of actions that are excluded by a (but not necessarily mutu-

ally exclusive).

Variables The model uses the following variables:

ya,b ∈ {0, 1} Indicates whether transition (a, b) ∈ T is used.
wa = ∑(a,b)∈T ya,b Auxiliary variable indicating whether action a is used or not.
xs

a, xe
a ∈ R+ The start and end time of action a ∈ A, respectively.

hs
v, he

v The start and end time of the hotel cost period for vessel v ∈ V.

Objective and constraints The objective and constraints are as follows:

min ∑
a∈A

(cawa + αa(xe
a − xs

a)) + ∑
v∈V

cH
v (h

e
v − hs

v) (7.1)

s.t. ∑
{(a,b)∈T | b∈A\Apo

v }
ya,b = 1 ∀a ∈

⋃
v∈V

Apo
v (7.2)

∑
(a,b)∈T

ya,b = ∑
(b,c)∈T

yb,c ∀b ∈ A′ (7.3)

∑
(a,b)∈T

ya,b ≤ 1 ∀b ∈ A′ (7.4)

xe
a − xs

b ≤ My
a,b(1− ya,b) ∀(a, b) ∈ T (7.5)

xs
a ≤ xe

a ∀a ∈ A (7.6)

dmin
a wa ≤ xe

a − xs
a ≤ dmax

a wa ∀a ∈ A (7.7)

xs
a = tawa ∀a ∈ At (7.8)

hs
v + Ms

vwa ≤ Ms
v + xe

a ∀a ∈
⋃

v∈V

Apo
v (7.9)

he
v + me

vwa ≥ me
v + xs

a ∀a ∈
⋃

v∈V

Api
v (7.10)

∑
a∈µ(i)

wa ≤ 1 for i = 1, 2, . . . n (7.11)

|η(a)|wa + ∑
b∈η(a)

wb ≤ |η(a)| ∀a ∈ A (7.12)

The objective, (7.1), sums the fixed and variable costs of each action that is used
along with the hotel cost for each vessel. The single unit flow (i.e., node disjoint)
structure of the graph is enforced in constraints (7.2) which start the flow of ves-
sels through the graph, ensuring that every vessel transitions out of its phase-out.
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Constraints (7.3) are flow balance constraints that ensure vessels sail traverse path
in the graph. Constraints (7.4) limit the incoming number of vessels to any activ-
ity to one, meaning that only a single vessel may undertake any particular activity.
Constraints (7.5) enforce the ordering of transitions between actions, preventing the
end of one action from coming after the start of another if the edge between them is
turned on. Action start and end times are ordered by (7.6), and the duration of each
action is limited by (7.7). Actions with fixed start times are bound to this time in
(7.8). Constraints (7.9) and (7.10) connect the hotel start and end times to the time of
the first and last action, respectively. Note that the objective forces hs

v and he
v as close

together as possible, and that the big/little-Ms are required because each action has
a different start time. The mutual exclusivity of certain sets of actions is enforced
in constraints (7.11). Finally, constraints (7.12) prevents actions from being included
in the plan if they are excluded by an action that was chosen. These constraints are
primarily used to ensure the block phase in structure necessary to have a weekly
temporal spacing of vessels. When a phase-in is chosen for a vessel, phase-ins that
could not possibly be used with it are disabled. For example, in a 3 vessel problem,
any phase-in more than 2 weeks later from a particular phase-in is disabled if a vessel
uses that phase-in.

7.3.4 A Novel CP Model

Despite the success of LTOP and MIP in solving LSFRP instances, the question re-
mains as to how these approaches perform versus Constraint Programming tech-
niques. To find out, we create a CP model of the LSFRP, detailed below. This section
as well as the later LSFRP results in this chapter are joint work with Kevin Tierney;
all LSFRP experiments were carried out by Kevin Tierney.

Let Ov be the set of possible phase-out actions for the vessel v, and let P be the
be the set of possible phase-in ports for the new service. The decision variable ρ ∈ P
is the phase-in port for all vessels. The decision variables wv ∈ {1, . . . , W} represent
the phase-in week for each vessel v, where W is the number of weeks considered
in the problem. For each vessel v, let qv ∈ Ov be a decision variable specifying the
phase-out action (port and time) used for that vessel.

For each vessel v and phase-out action o, the function tout(v, o) specifies the phase-
out time for that action. Similarly, tin(p, w) specifies the phase-in time for a vessel
phasing in at port p in week w. The function C(v, o, p, w) specifies the cost for vessel
v using the phase-out action o, and phasing in at port p in week w, with -1 as a flag
that indicates vessel v cannot phase in at port p in week w if it phased out using
action q (for example, if action q starts too late for vessel v to reach port p in time).
The dependent variable cv specifies the cost for vessel v when the vessel sails directly
from the phase-out port to the phase-in port. For each vessel v, CH(v) specifies
its hourly hotel cost, and hv is the duration of the hotel cost time period (from the
phase-out to the phase-in).

Each SoS opportunity is split into several SoS actions, where each SoS action rep-
resents starting the SoS at a different port on the SoS service. SoS opportunities save



§7.3 LSFRP 165

money by allowing vessels to sail for free between two ports, however a cost for
transshipping cargo at each side of the SoS is incurred. Let S be the set of available
SoS actions and S′ be the set of SoS opportunities. The decision variable sv ∈ S spec-
ifies the SoS action used for each vessel v, with 0 being a flag indicating that vessel
v does not use an SoS action. For each SoS action s ∈ S, the function y : S → S′

specifies which SoS opportunity each SoS action belongs to, with y(s) = 0 being a
flag that specifies that the vessel is not using any SoS opportunity.

In order to use an SoS opportunity, a vessel must sail to the starting port of the
SoS opportunity before a deadline, and after using the SoS, it sails from the end port
at a pre-determined time to the phase-in port. The function Cto(v, s, o) specifies the
cost of vessel v using SoS action s, phasing out at phase-out o going to the SoS action,
and Cfrom(v, s, p, w) is the cost of vessel v to sail from SoS action s to phase in port p
in week w, with -1 as a flag that indicates that this combination of vessel, SoS action,
phase-in port and week is infeasible. The dependent variables σto

v and σ
from
v specify

the SoS costs for vessel v for sailing to and from the SoS, respectively. The function
A(v, s) specifies the cost savings of vessel v using SoS action s, and the dependent
variable σdur

v specifies the SoS cost savings for vessel v on the SoS.

Let Q be the set of sail-equipment (SE) opportunities, which are pairs of ports in
which one port has an excess of a type of equipment, e.g. empty containers, and the
other port has a deficit. Since we do not include a detailed view of cargo flows in
this version of the LSFRP, SE opportunities save money by allowing vessels to sail for
free between two ports as long as the vessel sails at its slowest speed. The cost then
increases linearly as the vessel sails faster. Let the decision variable ev ∈ E be the SE
opportunity undertaken by vessel v, with ev = 0 indicating that no SE opportunity is
used. Let the decision variables dto

v , ddur
v and dfrom

v be the duration of vessel v sailing
to, during, and from an SE opportunity.

The functions Cto(v, e, o), Cdur(v, e) and Cfrom(v, e, p, w) specify the fixed costs of
sailing to, utilizing, and then sailing from SE opportunity e, where v is the vessel, o is
the phase-out port/time, p is the phase-in port and w is the phase-in week. Together
with the constant αv, which is the variable sailing cost per hour of vessel v, the hourly
cost of sailing can be computed. This is necessary since SE opportunities are not
fixed in time and, thus, must be scheduled. Let the dependent variables λto

v , λdur
v and

λ
from
v be the fixed costs sailing to, on and from an SE opportunity. Additionally, let

∆to
min(v, e, o), ∆dur

min(v, e) and ∆from
min (v, e, p, w) be the minimum sailing time of v before,

during and after the SE opportunity and ∆to
max(v, e, o), ∆dur

max(v, e) and ∆from
max(v, e, p, w)

be the maximum sailing time of v before, during and after the SE opportunity.

In this version of the LSFRP, the chaining of SoS and SE opportunities is not
allowed, meaning each vessel has the choice of either sailing directly from the phase-
out to the phase-in, undertaking an SoS, or performing an SE. The decision variable
rv ∈ {SoS, SE, SAIL} specifies the type of repositioning for each vessel v, where v
utilizes an SoS opportunity, SE opportunity, or sails directly from the phase-out to
the phase-in, respectively. The CP model is formulated as follows:
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min ∑
v∈V

(
CH(v) (tin(ρ, wv)− tout(v, qv)) + cv + σ

from
v + σdur

v + σto
v

+ λto
v + λdur

v + λ
from
v + αv(dto

v + ddur
v + dfrom

v )
)

(7.13)

s. t. alldifferent(wv), v ∈ V (7.14)

max
v∈V

wv −min
v∈V

wv = |V| − 1 (7.15)

alldifferent_except_0(sv), v ∈ V (7.16)

alldifferent_except_0(y(sv)), v ∈ V (7.17)

rv = SAIL→ cv = C(v, qv, ρ, wv), ∀v ∈ V (7.18)

rv = SAIL→
(
sv = 0∧ y(sv) = 0∧ σdur

v = 0∧ σ
from
v = 0∧ σto

v = 0

∧ ev = 0∧ λto
v = 0∧ λdur

v = 0∧ λ
from
v = 0

)
, ∀v ∈ V (7.19)

rv = SoS→ sv > 0∧ y(sv) > 0∧ σdur
v = −A(v, sv)

∧ σ
from
v = Cfrom(v, sv, ρ, wv) ∧ σto

v = Cto(v, sv, qv), ∀v ∈ V (7.20)

rv = SoS→ cv = 0∧ ev = 0∧ λto
v = 0∧ λdur

v = 0∧ λ
from
v = 0, ∀v ∈ V (7.21)

sv > 0∨ y(sv) > 0→ rv = SoS, ∀v ∈ V (7.22)

alldifferent_except_0(ev), ∀v ∈ V (7.23)

rv = SE→ ev > 0∧ λto
v = Cto(v, ev, qv) ∧ λdur

v = Cdur(v, ev)

∧ λ
f rom
v = C f rom(v, ev, ρ, wv), ∀v ∈ V (7.24)

rv = SE→sv = 0∧ y(sv) = 0∧ σdur
v = 0∧ cv = 0

∧ σ
from
v = 0∧ σto

v = 0, ∀v ∈ V (7.25)

ev > 0→ rv = SE (7.26)

∆to
min(v, ev, qv) ≤ dto

v ≤ ∆to
max(v, ev, qv), ∀v ∈ V (7.27)

∆dur
min(v, ev) ≤ ddur

v ≤ ∆dur
max(v, ev), ∀v ∈ V (7.28)

∆from
min (v, ev, ρ, wv) ≤ dfrom

v ≤ ∆from
max(v, ev, ρ, wv), ∀v ∈ V (7.29)

σto
v , σ

from
v , cv ≥ 0, ∀v ∈ V (7.30)

The objective function (7.13) minimises the sum of the hotel costs and reposition-
ing action costs minus the cost savings for SoS actions for the set of vessels. Con-
straints (7.14) and (7.15) specify that the vessels must all phase in to the new service
on different, successive weeks. Constraints (7.16) and (7.17) specify that all vessels us-
ing SoS actions must use different actions and action types. alldifferent_except_0
is a global constraint that requires all elements of an array to be different, except those
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that have the value 0.
Constraints (7.18) and (7.19) set the costs for a vessel if it uses a SAIL reposition-

ing, and ensures that the SoS/SE actions and costs are set to 0, as they are not being
used. Constraints (7.20) and (7.21) specify that if vessel v uses an SoS (SoS) reposi-
tioning action sv, then its repositioning cost is equal to the costs for sailing to and
from that SoS action based on the phase-out action, phase-in port and week, minus
the cost savings A(v, sv) for that SoS action. In addition, the normal repositioning
cost cv and the sail equipment action for that vessel are set to 0. Redundant con-
straints (7.22) are also added to reinforce that the repositioning type be set correctly
when an SoS is chosen.

Constraints (7.23) ensure that no two vessels choose the same SE action (unless
they choose no SE action), and constraints (7.24) and (7.25) bind the costs of the sail
equipment action to the dependent variables if an SE is chosen, as well as set the
costs of a direct sailing and SoS opportunities for each vessel to 0. The redundant
constraints (7.26) ensure that the repositioning type of vessel v is correctly set if an
SE action is chosen. The minimum and maximum durations of the parts of the SE
(sailing to the SE from the phase-out, the SE itself, and sailing from the SE to the
phase-in) are set in constraints (7.27), (7.28) and (7.29). Constraint (7.30) requires that
all SoS actions and phase-out/phase-in combinations must be valid for each vessel
(i.e. transitions with -1 costs must not be used).

7.3.5 LSFRP CP Results

To compare the above CP model for the LSFRP against an earlier MIP model and
against the LTOP planner [Tierney et al., 2012a], all three models are used to solve
the 11 AC3 problem instances from Tierney et al. [2012a], as well as 27 new instances
based on a real-world scenario provided by an industrial collaborator. The problem
instances contain up to 9 vessels, with varying SoS and sail-with-equipment oppor-
tunities that may be used to reduce repositioning costs.

The LSFRP CP model was formulated in the MiniZinc 1.6 modelling language [Nether-
cote et al., 2007, 2010], and solved using the G12 finite domain solver [Wallace, 2009].
The CP is compared against a MIP model and the LTOP planner [Tierney et al.,
2012a], both using CPLEX 12.4. All problems were solved to optimality. Note that in
the CP model for MiniZinc we had to add constraints on the maximum duration of
SE actions, as well as a constraint on the maximum sum of the objective, in order to
prevent integer overflows. These constraints do not cut off any valid solutions from
the search tree. Since MiniZinc does not support floating point objective values, the
MiniZinc model is a close approximation of the true objective.

We also used several search annotations within MiniZinc to help guide the solver
to a solution. The first is to branch on the type of repositioning, rv, before other
variables. We thereby attempt to first find an SoS option for each vessel, then search
through SE options, and finally SAIL options. This search order was the most ef-
ficient for the most complex models that include both SoS and SE opportunities.
This is because SE constraints are more complex than SoS constraints, so searching
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SE options first is more time consuming for models that contain both SoS and SE
opportunities.

For instances with SE opportunities, we also add a search annotation to branch on
the SE opportunity, ev, using the "indomain_split” functionality of MiniZinc, which
excludes the upper half of a variable’s domain. Both annotations use a first failure
strategy, meaning the variable the solver branches on is the one with the smallest
domain.

Table 7.4 compares the run times of the CP model against the MIP model and
LTOP, all of which solve to optimality1. We ran the CP model with search anno-
tations using a search order of SAIL/SoS/SE (CP–A), with search annotations and
the SoS/SE/SAIL ordering (CP–AO), as well as with only the redundant constraints
and using the solver’s default search (CP–R), and using the SoS/SE/SAIL ordering
with redundant constraints (CP–AOR). We label instances with the format G_S_O_ce,
where G is the name of the goal service in Maersk Line’s network, S is the number
of ships, O is the number of SoS opportunities, c indicates that there are cabotage
restrictions, and e indicates whether the instance contains any equipment.

CP–AOR outperforms LTOP on all instances in the dataset, and the MIP on all
but one instance in the dataset. This contrasts with the results in Kelareva, Tierney,
and Kilby [2013a], where CP–AOR outperformed the MIP on all AC3 instances. This
is because we are using CPLEX 12.4, and Kelareva, Tierney, and Kilby [2013a] uses
CPLEX 12.3. This shows that using a well-supported solver like CPLEX (or the G12
CP solver) can provide advantages over less developed techniques, like LTOP, in
that new versions can provide significantly faster solution times without any model
changes. The average solution time required by CP–AOR is also significantly less
than LTOP and the MIP both in terms of the arithmetic and geometric means, with
CP–AOR requiring, on average, only 59% the time of the MIP, and 46% of the time
of LTOP in terms of the arithmetic mean, respectively.

We provide results for the various parameterisations of our CP approach in order
to determine the source of its good performance. No configuration on its own is
able to dominate the others across all instances. Combining annotations, ordering
and redundant constraints into CP–AOR provides better average performance than
any single configuration, as well as finds more optimal solutions than any other
configuration. Interestingly, several of the best CPU times are not found by CP–AOR,
but by individual configurations, such as on FM3_4_4ce, FM3_6_6e, FM3_6_6ce and
TP7_6_4. In fact, CP-R finds an optimal solution to TP7_6_4 not found by any other
solver, indicating that an instance-specific solving approach using machine learning,
like in Kadioglu et al. [2010] could be a good approach on problems like the LSFRP.
The implementation of such a system is left for future work.

Our CP model comes with two limitations. The first limitation is the model’s lack
of flexibility. A natural extension to this model would be to allow for the chaining
of SoS and SE opportunities, which is easy to do in both the LTOP and MIP models,
due to automated planning’s focus on actions, and our MIP model’s focus on flows.

1Experiments used Intel Core i7-2600K 3.4GHz processors with a maximum of 4GB per execution.
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Problem LTOP MIP CP CP–A CP–AO CP–R CP–AOR
AC3_1_0 0.6 0.3 0.1 0.1 0.1 0.1 0.1
AC3_2_0 27.1 2.0 0.1 0.1 0.1 0.1 0.2
AC3_3_0 107.1 12.0 0.2 0.2 0.2 0.2 0.3

AC3_1_1e 2.1 0.9 0.3 0.3 0.3 0.4 0.2
AC3_2_2ce 8.1 9.3 - 48.3 12.3 - 5.3
AC3_3_2c 111.6 54.9 2.8 1.3 1.3 2.8 1.4
AC3_3_2e 112.4 69.7 657.2 6.8 7.0 1052.5 6.1

AC3_3_2ce1 104.4 73.3 999.5 12.2 7.1 83.4 6.2
AC3_3_2ce2 99.6 68.0 78.6 15.8 9.7 505.7 8.2
AC3_3_2ce3 234.0 190.1 - 3067.5 338.6 - 228.9

AC3_3_3 41.0 43.9 7.0 5.0 4.6 7.2 4.8
FM3_4_0 3002.4 1469.3 8.2 9.0 8.5 8.2 8.1
FM3_4_4 - 712.9 6.5 10.8 6.7 6.5 6.4

FM3_4_4c 3031.9 380.2 6.5 7.0 6.7 6.4 6.4
FM3_4_4ce - 514.6 - 38.1 68.6 3370.0 55.9

FM3_5_0 - 615.4 23.0 27.4 23.5 23.2 22.6
FM3_5_4 - 897.3 20.4 25.8 21.1 20.5 20.4

FM3_5_4e - 1205.5 - 120.4 227.6 - 172.5
FM3_5_6 - 836.4 21.6 30.5 25.3 21.7 22.6
FM3_6_0 - - 69.2 80.3 72.4 71.1 68.6
FM3_6_1 - - 89.8 98.3 93.8 93.7 88.7
FM3_6_2 - - 90.3 128.8 93.9 92.7 89.1
FM3_6_4 - - 98.8 111.9 89.5 101.5 86.1
FM3_6_6 - - 90.5 106.3 88.1 94.2 83.3

FM3_6_6e - - - 466.7 3063.4 - 735.5
FM3_6_6ce - 2290.3 - 529.6 3071.6 - 736.0

TP7_6_0 - - 468.6 472.7 467.2 469.9 446.3
TP7_6_4 - - - - - 2041.2 -

TP7_6_4e - - - - - - -
TP7_7_0 - - - - - - -
TP7_7_4 - - - - - - -

TP7_7_4e - - - - - - -
TP7_8_0 - - - - - - -
TP7_8_6 - - - - - - -

TP7_8_6e - - - - - - -
TP7_9_0 - - - - - - -
TP7_9_3 - - - - - - -
TP7_9_6 - - - - - - -

TP7_9_6e - - - - - - -
Mean 2549.5 1996.1 1731.8 1246.7 1307.9 1683.9 1182.3

Geo. mean 909.6 553.1 188.2 97.3 92.9 186.8 82.1

Table 7.4: Computation times to optimality in seconds with a timeout of one hour
for the CP model with and with annotations (A), repositioning type order (O), and

redundant constraints (R) versus LTOP and the MIP.
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However, the CP model is structured around exploiting this piece of the problem.
Other natural changes, such as allowing vessels to undergo repairs, would also be
difficult to implement. The second limitation is that many of the components of the
CP model involve pre-computations that multiply the number of phase-out actions
with the number of phase-in ports and weeks. Although the model works well on
our real world instance, these pre-computations pose an issue for scaling to larger
liner shipping services.

7.4 Lazy Clause Generation

Lazy Clause Generation (LCG) [Ohrimenko, Stuckey, and Codish, 2009] or CP with
learning has been found to be effective on a number of scheduling problems [Schutt
et al., 2012; Feydy and Stuckey, 2009; Chu et al., 2010]. LCG solvers can be used for
any problem that is modelled as a constraint programming problem, which makes
LCG a highly generalisable technique that is worth investigating for scheduling and
routing problems with time-varying action costs. In this section, we compare a CP
solver LCG with against a traditional finite domain CP solver for the BPCTOP CP
model from Chapter 3, as well as for the LSFRP CP model presented in Section 7.3.

7.4.1 Experimental Results for BPCTOP

The CP model for the BPCTOP with all improvements from Chapter 4 was formu-
lated in the MiniZinc modelling language [Nethercote et al., 2007] and solved using
the CPX solver included in G12 2.0 [Wallace, 2009; Feydy and Stuckey, 2009], which
uses Lazy Clause Generation. The CPX runtimes were then compared against the
G12 2.0 finite domain CP solver, using backtracking search with the fastest variable
selection and domain reduction strategies as discussed in Chapter 4. All BPCTOP
experiments used an Intel i7-930 quad-core 2.80 GHz processor and 12.0 GB RAM,
with a 30-minute cutoff time.

The CPX solver builds on the G12 finite domain solver, and combines it with a
SAT solver. The FD solver controls the search, posting an explanation clause to the
SAT solver every time a propagator is executed which updates a variable domain
or causes failure. Explanation clauses explain the reason for a failure or a variable
domain change; however, the implementation of a LCG solver may differ in how
explanation clauses are generated, which may affect the efficiency of both the CP and
SAT components. After receiving a new explanation clause, the SAT solver performs
unit propagation, which may cause further domain changes to be made, after which
control passes back to the FD solver. See Ohrimenko, Stuckey, and Codish [2009]
for an introduction to Lazy Clause Generation, and Feydy and Stuckey [2009] for an
in-depth discussion of the CPX solver.

Both solvers were used to solve the set of problems presented in Chapter 4, ex-
tended to contain problems with 4 to 20 ships for each problem type – Mixed_Wide

(MW), Mixed_Narrow (MN), OneWay_Wide (OW) and OneWay_Narrow (ON) –
both with and without tugs, for a total of 4 · 17 · 2 = 136 different problem instances.
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No Tugs With Tug Constraints
NShips G12_FD G12_CPX G12_FD G12_CPX

4 0.34 0.23 0.23 0.33
5 0.23 0.22 0.33 0.33
6 0.44 0.22 0.44 0.67
7 0.34 0.33 2.95 3.60
8 0.45 0.87 47.0 24.4
9 4.70 23.4 184 65.7

10 99.9 482 >1800 817
11 609 >1800 – >1800
12 >1800 – – –

Table 7.5: CPU time (s) for CPX solver with LCG vs. G12 finite domain solver on
OneWay_Narrow (ON) problems.

Table 7.5 presents calculation times in seconds for CPX and the G12 FD solver,
for each number of ships that could be solved to optimality within the 30-minute
cutoff time, for the problems in the most tightly constrained (and thus most difficult)
OneWay_Narrow (ON) problem set. A dash indicates that the optimal solution was
not found within the cutoff time. Problems with 13 or more ships could not be solved
within the cutoff time, and are thus omitted.

Table 7.6 shows the number of ships in the largest problem that could be solved
within the 30-minute cutoff time for all four problem types, with and without tugs,
with runtimes in seconds given in brackets. In both tables, bold font indicates the
solver that was faster to solve a given problem.

Table 7.5 shows that CPX scales better than the FD solver for large ON problems
with tug constraints. However, CPX is slower to solve ON problems without tugs.
This may indicate that CPX finds effective nogoods (areas of the search space with
no good solutions) for tug constraints, enabling CPX to avoid searching large areas
of the search space for the problem with tug constraints. The FD solver, on the
other hand, cannot eliminate those areas of the search space, leading to excessive
backtracking resulting from the highly oversubscribed tug problem.

Table 7.6 shows that the difference between the CPX and FD solvers is even
greater for Mixed problems. Mixed problems have a mix of inbound and outbound
ships, resulting in a less constrained problem, but one that has more complex tug
constraints due to needing to consider tugs moving between inbound and outbound
ships. This indicates that CPX is very fast at dealing with complex constraints, but
the speed difference decreases when the problem is tightly constrained. CPX is able
to solve larger problems faster for all problem types except for OneWay_Narrow

without tugs – this is the most constrained problem type, using the simplest con-
straints (no tugs, and no interaction between incoming and outgoing ships).

The slower performance of CPX on the problem without tugs indicates that there
may be room for improvement if better explanations are added for constraints that do
not involve tugs, such as the sequence-dependent setup times between ships, and the
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Problem FD CPX
Mixed_Wide (MW) 11 (326) 16 (1040)

OneWay_Wide (OW) 11 (1480) 11 (273)
Mixed_Narrow (MN) 11 (370) 16 (1100)

OneWay_Narrow (ON) 11 (609) 10 (482)
Mixed_Wide_Tugs (MWT) 10 (11.5) 13 (1290)

OneWay_Wide_Tugs (OWT) 9 (81.5) 11 (1680)
Mixed_Narrow_Tugs (MNT) 10 (202) 12 (1350)

OneWay_Narrow_Tugs (ONT) 9 (184) 10 (817)

Table 7.6: CPX solver vs. G12 finite domain solver: number of ships in the largest
problem solved within the cutoff time, with CPU time in seconds in brackets.

propagation of the objective function itself. As the Tugs problem is composed of the
NoTugs problem with additional constraints, speeding up the solution time of the
NoTugs problem would likely also improve the solution time of the Tugs problem.

7.4.2 Experimental Results for LSFRP

We use the Opturion CPX 1.0 optimizer [Opturion Pty Ltd, 2013] to solve the LSFRP2.
Table 7.7 shows the time to solve the LSFRP to optimality in seconds for all of the
instances in our dataset for both using LCG (CPX–AOR) and without LCG (CP–
AOR). We omit LTOP, the MIP and other CP configurations from these results due to
the dominance of CP-AOR on the LSFRP. Using LCG results in an average time of 138
seconds less than not using LCG, although the geometric means of both approaches
are relatively similar. Of particular note is that LCG is able to solve three instances
that timeout when not using LCG, allowing instances with up to 9 ships to be solved.
In addition to these three instances, CPX–AOR posts significant runtime gains on 4
instances, although it is significantly slower than not using LCG on 10 instances,
with the rest of the instances resulting in (roughly) a tie. LCG seems to be somewhat
slower on problems with equipment, which tend to have more time-dependent task
costs in their objective than instances without equipment, which could indicate that
LCG is useful for problems with limited numbers of time-dependent tasks, or tasks
that resemble the hotel costs present in all LSFRP instances.

Lazy Clause Generation (LCG) is a very general technique that has been suc-
cessfully used to speed up calculation times for many different types of scheduling
problems. However, as it is a recent method, its effectiveness for many other prob-
lem types has not yet been investigated. Like other complete methods, LCG does
not scale well to large problems, but shows promise in its scaling behavior on the
LSFRP. However, like traditional CP solvers, LCG solvers can be combined with de-
composition techniques or large neighbourhood search to improve scalability Schutt
et al. [2012]. Given our positive results on both the BPCTOP and LSFRP, LCG may

2This is essentially the same solver as the CPX solver included with G12 that is used for the BPCTOP
except for some bug fixes that allow it to work with the LSFRP.



§7.4 Lazy Clause Generation 173

Problem CP–AOR CPX–AOR
AC3_1_0 0.1 0.1
AC3_2_0 0.2 0.3
AC3_3_0 0.3 0.6

AC3_1_1e 0.2 0.2
AC3_2_2ce 5.3 5.8
AC3_3_2c 1.4 1.0
AC3_3_2e 6.1 11.0

AC3_3_2ce1 6.2 14.5
AC3_3_2ce2 8.2 14.1
AC3_3_2ce3 228.9 75.5

AC3_3_3 4.8 2.0
FM3_4_0 8.1 13.5
FM3_4_4 6.4 8.1

FM3_4_4c 6.4 8.3
FM3_4_4ce 55.9 125.7

FM3_5_0 22.6 25.3
FM3_5_4 20.4 28.2

FM3_5_4e 172.5 507.7
FM3_5_6 22.6 53.9
FM3_6_0 68.6 44.5
FM3_6_1 88.7 80.5
FM3_6_2 89.1 82.4
FM3_6_4 86.1 218.6
FM3_6_6 83.3 84.4

FM3_6_6e 735.5 823.4
FM3_6_6ce 736.0 825.2

TP7_6_0 446.3 63.4
TP7_6_4 - -

TP7_6_4e - -
TP7_7_0 - 435.6
TP7_7_4 - -

TP7_7_4e - -
TP7_8_0 - 1303.4
TP7_8_6 - -

TP7_8_6e - -
TP7_9_0 - 3455.5
TP7_9_3 - -
TP7_9_6 - -

TP7_9_6e - -
Mean 1182.3 1043.9

Geo. mean 82.1 83.1

Table 7.7: Computation times to optimality in seconds with a timeout of one hour
for the CP model without LCG (CP–AOR) and with LCG (CPX–AOR).
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Problem NShips Runtime (s) NShips Runtime (s)
Type (small) FD CPX Simple (large) FD CPX Simple

MW 11 326 8.19 188 16 >1800 1040 >1800
OW 11 1480 273 0.56 12 >1800 >1800 26.7
MN 11 370 7.64 180 16 >1800 1100 >1800
ON 10 99.9 482 0.34 12 >1800 >1800 19.6

MWT 10 11.5 17.1 11.4 13 >1800 1290 >1800
OWT 9 81.5 23.9 4.60 11 >1800 1680 >1800
MNT 10 202 42.8 8.21 12 >1800 1350 >1800
ONT 9 184 65.7 0.69 10 >1800 817 262

Table 7.8: Runtime (s) of CPX vs. the FD solver with a simplified BPCTOP model.

be worth investigating as an approach to dealing with other routing and scheduling
problems with time-dependent task costs.

7.5 Solve-and-Improve

Many scheduling and routing approaches initially solve a simplified model, and
then use the constraints and objective function of the full problem to improve it. For
routing and scheduling problems with time-dependent action costs, removing the
time dependence of the objective function is one way to simplify the problem for the
first step of a solve-and-improve approach, as used by Lin et al. [2005].

This section investigates simplified models for both the LSFRP and BPCTOP
which ignore time-varying action costs, and compares the improvement in runtime
against improvements obtained by the CP model for the LSFRP and the LCG solver
for the BPCTOP. The runtimes for the simplified models are a lower bound on the
runtime of a full solve-and-improve approach, as the improvement step would in-
crease the runtime further.

7.5.1 Results for BPCTOP

A simplified BPCTOP model was implemented by replacing the time-varying objec-
tive function by feasible time windows, and solving the problem with the objective
of maximising the number of ships scheduled to sail.

Table 7.8 compares the runtimes of the normal and simplified models for the
largest problem that was successfully solved by all approaches, as well as for the
largest problem solved by any approach. Bold font indicates the fastest runtime, (ie.
the approach that results in the largest reduction in runtime).

Table 7.8 shows that, while the simplified model is faster for small problem sizes,
for large problem sizes the CPX solver with LCG is faster than the simplified model
to solve 5 of the 8 problem types, indicating that CPX scales better than the simplified
model for 5 of the 8 problem types. As seen earlier in Table 7.6, CPX is particularly
effective on large problems with tugs.
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One interesting observation from Table 7.8 is that the simplified model gives the
largest runtime improvement for the most tightly constrained ON and ONT prob-
lems, allowing problems with one more ship to be solved within the 30-minute cutoff
time. The least tightly constrained MW and MWT problems show only a small im-
provement in runtime from relaxing the time window penalties; and the moderately
constrained MN, MNT, OW and OWT problems show moderate improvements. This
result is similar to the effect of relaxing hard time windows in a vehicle routing prob-
lem, as was investigated by Qureshi, Taniguchi, and Yamada [2009]. Extending the
latest delivery time by 10-20 minutes was found to significantly improve schedule
costs for tightly constrained problems. For problems with wide time windows, on
the other hand, where the time windows did not constrain the problem, relaxing the
time windows had little effect on cost and also increased runtime due to increasing
the computational complexity of the problem.

7.5.2 Results for LSFRP

A simplified LSFRP model was implemented by fixing all sailing and sail equipment
actions to "slow-steaming”, i.e. minimum fuel cost with maximum time using the
LTOP planner [Tierney et al., 2012a]. A similar simplification was applied to the CP
model, by binding all sail equipment actions to their maximum length. Sail actions
in the CP model are discretised, so we do not need to change them to simplify the
model. However, the hotel cost calculation, an important time-dependent task cost
in the LSFRP, cannot be simplified in any reasonable way.

Table 7.9 provides the runtimes in seconds for LTOP and CP versus simplified
LTOP and CP approaches, with a timeout of one hour of CPU time3. The results
show that solve-and-improve is not a particularly effective method within the LTOP
framework, with only AC3_3_0 showing any speed improvements. We can therefore
conclude that fixing the length and cost of the sail action is not very effective for
the LTOP method on the LSFRP, since the problems where the most benefit can be
expected from fixing action costs are those in which the optimal answer uses all
slow-steaming actions.

Using solve-and-improve with CP–AOR leads to more promising results than
with LTOP, although it is unable to offer solutions for large LSFRP instances with
equipment. S–CP–AOR is able to find a solution quickly on a number of problems
with equipment, which are the only problems for CP where it can make a difference.
In particular on AC3_3_2ce3, FM3_6_6e, and FM3_6_6ce solve-and-improve requires
only around 10% of the time of CP–AOR. Of course, the improve step still would
need to be run.

7.5.3 Summary

A solve-and-improve approach that simplifies away time-varying action costs was
found by Lin et al. [2005] to be effective for satellite imaging scheduling. However,

3Experiments used Intel Core i7-2600K 3.4GHz processors with a maximum of 4GB per execution.
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Problem LTOP S–LTOP CP–AOR S–CP–AOR
AC3_1_0 0.6 0.5 0.1 0.1
AC3_2_0 27.1 20.7 0.2 0.1
AC3_3_0 107.1 66.1 0.3 0.3

AC3_1_1e 2.1 2.3 0.2 0.2
AC3_2_2ce 8.1 8.9 5.3 2.5
AC3_3_2c 111.6 142.7 1.4 1.3
AC3_3_2e 112.4 117.4 6.1 3.1

AC3_3_2ce1 104.4 115.7 6.2 3.2
AC3_3_2ce2 99.6 104.4 8.2 3.5
AC3_3_2ce3 234.0 234.0 228.9 26.9

AC3_3_3 41.0 42.8 4.8 4.5
FM3_4_0 3002.4 2931.3 8.1 8.8
FM3_4_4 - - 6.4 7.2

FM3_4_4c 3031.9 2939.6 6.4 6.9
FM3_4_4ce - - 55.9 8.6

FM3_5_0 - - 22.6 24.7
FM3_5_4 - - 20.4 22.0

FM3_5_4e - - 172.5 24.3
FM3_5_6 - - 22.6 24.7
FM3_6_0 - - 68.6 73.5
FM3_6_1 - - 88.7 97.2
FM3_6_2 - - 89.1 96.5
FM3_6_4 - - 86.1 92.9
FM3_6_6 - - 83.3 91.8

FM3_6_6e - - 735.5 78.0
FM3_6_6ce - - 736.0 78.3

TP7_6_0 - - 446.3 -
Mean 2549.5 2572.5 1182.3 1220.0

Geo. mean 909.6 934.5 82.1 61.6

Table 7.9: Computation times to optimality in seconds for CP and LTOP versus sim-
plified approaches (S–LTOP and S–CP–AOR) with optimal windows. Note that we

have removed all TP7 instances except for TP7_6_0 due to timeouts.
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they did not compare the calculation speed of the complete problem against the sim-
plified problem, so there is no indication of the improvement in calculation speed
produced by simplifying away the time-varying quality function. However, the ex-
periments in this section found that simplifying the LSFRP and BPCTOP models by
removing the time-varying cost function did not produce significant speed improve-
ment, and that switching to a CP model or a solver with LCG was more effective.

It is possible that simplifying the cost function was more effective for speeding
up solution times for Linear Programming problems such as Lin et al. [2005], rather
than for CP or automated planning. However, more work would need to be done to
identify the speed improvement produced by simplifying the quality function in Lin
et al. [2005].

7.6 Conversion to Vehicle Routing

Of all scheduling and routing problems with time-varying task costs, the Vehicle
Routing Problem with Soft Time Windows (VRPSTW) is one of the most thoroughly
researched, comprising about 90% of the literature on scheduling and routing prob-
lems with soft time windows. Since the vehicle routing domain has been investigated
more extensively than other scheduling and routing problems with time-varying task
costs, there are several fast, efficient solvers for the VRPSTW in existence.

Many scheduling problems, particularly those without complex side constraints,
can be modelled as a VRP, which brings us to the idea that for some scheduling
problems, converting them to VRPs and solving using an existing VRP solver may
be more efficient than using a generic CP or MIP solver.

This section investigates the approach of converting a scheduling problem with
time-varying action costs to a VRPSTW and using an existing VRP solver to solve this
problem. We test this approach by modelling the BPCTOP with time-varying draft
restrictions as a VRPSTW. The basic BPCTOP without tug availability constraints can
be converted easily to a VRPSTW; however, the complex tug constraints are more
difficult to convert to vehicle routing constraints. The model, both with and without
tugs, is described below.

7.6.1 BPCTOP VRP Model

The BPCTOP without tug constraints is modelled as a VRP as follows:

• Each ship is modelled as a job.

• The channel is modelled as a single vehicle that must be used to complete all
jobs.

• The sequence-dependent separation times between ships are modelled as direction-
dependent travel times between successive jobs.

• Each job has an earliest time when it can be completed, corresponding to the
ship’s earliest sailing time.
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• The value of each job request corresponds to the weighted draft of the ship.

• For each request, soft time window cost penalties are specified corresponding
to the reduction in draft if the ship sails outside its maximum draft window.

• The objective of the VRP is to maximise the total value of all fulfilled requests.

We solve the model using the Indigo VRP solver, which is able to consider a wide
variety of side constraints [Kilby and Verden, 2011]. One limitation of the solver is
that it is only able to handle soft time windows with linear penalties, whereas the
draft function can vary non-linearly outside the peak draft windows. Using linear
penalty functions to approximate our draft functions may lead to schedules that are
not entirely optimal with respect to the true draft functions. While conversion to
VRP may be useful for finding close-to-optimal solutions for large ship scheduling
problems, a further improvement step may be needed to optimise the final schedules.
For example, we could use the VRP for an approximate solution for large multi-port
problems or long time scales, then find optimal schedules for each high tide at each
port by solving the CP model with the exact draft function.

The basic port optimisation problem without tug constraints only has one vehicle,
and can therefore be considered as a Travelling Salesman Problem which aims to
minimise soft time window penalties instead of the total distance. However, a TSP
approach would not be generalisable to more complex scheduling problems that
have multiple resources. Also, any TSP approach would not be able to handle more
complex constraints such as the BPCTOP tug constraints. In this thesis, we only
investigate modelling the problem as a VRP, not as a TSP, since the VRP approach
would be generalisable to a larger range of problems.

7.6.2 Tug Constraints Model

The BPCTOP constraints on tug availability can be modelled using vehicle routing
constraints as follows:

• In order to model the tugs, the VRP requires two commodities – a "ship" com-
modity, used to fulfil job requests for ship sailings, and a "tug" commodity,
used to fulfil tug requirements for each ship.

• Each tug available at the port is modelled as a separate vehicle, able to transport
1 unit of the "tug" commodity, and none of the "ship" commodity. This allows
us to model tug turnaround times as travel times from the tug job locations
back to the depot.

• The channel is still modelled as a vehicle, able to transport an unlimited amount
of the "ship" commodity, and none of the "tug" commodity.

• New locations are now required for each possible duration of tug turnaround
times, with travel times from each tug location to the depot representing tug
turnaround times.
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• For each ship, we add extra requests for each tug required for that ship. Each
tug request requires one unit of the tug commodity.

• We add constraints specifying that tug requests for each ship must be serviced
at the same time as the corresponding ship request.

• We also add constraints specifying that if a ship request is fulfilled, then all tug
requests for that ship must also be fulfilled.

Modelling the tug constraints as a VRP requires a VRP solver that can handle
constraints that require two jobs to be completed at the same time, and constraints
that specify that two jobs must either both be completed, or both not completed. Un-
fortunately, at present, Indigo cannot calculate soft time window penalties correctly
with these side constraints present, and other existing VRP solvers do not include
these types of constraints at all to the authors’ knowledge. For the moment, the
approach of converting a scheduling problem to a VRP is limited only to simple
scheduling problems without complex side constraints. More flexible VRP solvers
may be developed in future.

7.6.3 Experimental Results

We converted the most tightly constrained OneWay_Narrow ship scheduling prob-
lems from Chapter 4, extended to consider 4-20 ships sailing on a tide, to VRP prob-
lems with soft time windows. These problems were then solved using the Indigo
VRP solver [Kilby and Verden, 2011]. Indigo does not yet support constraints that
require two jobs to be completed at the same time in conjunction with early and late
arrival penalties, so we only present results for the problems with no tug constraints
for now. Extending Indigo to include the constraints required to support tugs and
testing the VRP model with tug constraints is left for future work.

All experiments were run on a Windows 7 machine with an Intel i7-930 quad-
core 2.80 GHz processor and 12.0 GB RAM, and with a 30-minute (1800-second)
cutoff time. Calculation times for Indigo vs the G12 FD and CPX solvers are shown
in Table 7.10.

The Indigo calculations used a Large Neighbourhood Search with two variations
of the search parameters: starting from 1000 iterations and increasing the number
of iterations by 200 for every ship; or starting from 200 iterations and increasing the
number of iterations by 40 for every ship. The calculation times for both sets of
iterations are shown in Table 7.10. Up to 15 visits are removed in each LNS iteration
and then re-inserted.

Indigo uses Large Neighbourhood Search to find the best solution within the
given number of iterations, but it does not produce a proof of optimality for the VRP
solution, and may return suboptimal solutions. Also, since Indigo only supports
linear time-window penalty functions, it cannot model the non-linear task value
functions precisely, which contributes to it finding suboptimal solutions for larger
problems where not all ships are able to sail with their peak draft.
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NShips G12_FD CPX VRP: 200 VRP: 1K
4 0.34 0.23 0.55 2.18
5 0.23 0.22 1.14 5.15
6 0.44 0.22 2.43 11.7
7 0.34 0.33 4.70 23.0
8 0.45 0.87 8.43 41.6
9 4.70 23.4 13.8 68.6
10 99.9 482 21.3 108
11 609 >1800 30.7 151
12 >1800 – 41.7 207
13 – – 53.6 276
14 – – 65.3 330
15 – – 78.4 430
16 – – 93.5 480
17 – – 118 548
18 – – 130 668
19 – – 151 737
20 – – 170 851

Table 7.10: Indigo VRP solver vs. G12 FD and CPX solvers, without tug constraints,
for OneWay_Narrow problems.

Figure 7.1 shows the cost increase of the optimal and VRP solutions compared to
an "ideal" situation with all ships sailing with their peak draft, for problems with up
to 11 ships for which an optimal solution was found using the CP model. Since the
solver’s Large Neighbourhood Search uses randomisation, the solver was run five
times for each problem, and the best of the five results is shown in Figure 7.1. Note:
the calculation times in Table 7.10 show the mean runtime for the five calculations.
The solver failed to find an optimal solution for problems with 10 or more ships, as
well as for 8 ships with the smaller number of search iterations.

The VRP modeling of the BPCTOP can be solved much faster than the CP model
for large problems with 10 or more ships. Indigo is able to solve problems with up
to 20 ships in a short timeframe – 8 ships more than the largest problem solved with
any CP solver. However, the results are suboptimal for all problems with 10 or more
ships, and no certificate of optimality can be provided by Indigo for any instance.

Increasing the number of iterations does not significantly improve the quality of
the schedules – in some cases, the best schedule found over five calculations is better
for calculations with fewer search iterations, for example, the case with 11 ships. This
indicates that the solver we chose for our experiments may be prone to getting stuck
in local minima, since past a certain point, searching with restarts is more effective
than simply increasing the number of iterations of Large Neighbourhood Search.

Modelling a scheduling problem as a VRP may be an effective way to find close
to optimal solutions for larger scheduling problems than can be solved using op-
timal methods. However, since VRP solvers only support the types of constraints
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Figure 7.1: Cost increase of optimal and VRP solutions compared to all ships sailing
with peak draft.

and penalty functions found in VRP problems, many types of scheduling problems
cannot be modelled accurately as a VRP, and a VRP solver will not be able to find
optimal solutions to the scheduling problem. However, even for those scheduling
problems where the VRP solution is not good enough on its own, it may provide a
good starting point for a slower method that can consider complex constraints and
objective functions.

7.7 Summary

While scheduling and routing problems have usually been solved using Mixed In-
teger Programming (MIP) and solve-and-improve approaches, Constraint Program-
ming (CP) with a good choice of model and search strategy, as well as recent tech-
niques such as Lazy Clause Generation (LCG), have been found to be faster for some
problem types. This chapter reviewed scheduling and routing problems with time-
varying action costs across a number of applications, and applied several approaches
that had been successfully used to solve other problems with time-varying action
costs to the Liner Shipping Fleet Repositioning Problem (LSFRP), and the Bulk Port
Cargo Throughput Optimisation Problem (BPCTOP).

A CP model for the LSFRP was found to be faster than existing MIP and auto-
mated planning models by an order of magnitude for some instances, similarly to
the findings that a CP model with a good choice of search strategy was faster than
a MIP model for the BPCTOP in Chapter 4. The CP models for both problems were
also solved with a CP solver that uses Lazy Clause Generation as well as a traditional
finite domain CP solver. The LCG solver was faster for 7 out of 8 problem types for
the BPCTOP. For LSFRP, the LCG solver was able to solve 3 more instances, as well
as achieving a faster average solution time across the entire dataset.
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This chapter also compared a solve-and-improve approach, which uses simplified
models without time-varying action costs to find initial solutions, against the LTOP
and CP models of the LSFRP and the full CP model for the BPCTOP. The speed im-
provement of removing time-varying costs was less than that obtained by converting
the LSFRP to a CP model for all problem instances, and solving the BPCTOP using
an LCG solver scaled better than using a finite domain solver for 5 of 8 problem
types, particularly for the most challenging problems with complex tug constraints.

The investigation of the LSFRP CP model in this chapter, as well as the BPC-
TOP CP model in Chapter 4, found that the CP model solution time was highly
dependent on having a good choice of model and search strategy. However, with
this caveat, we find that CP and LCG are efficient and flexible methods that are able
to handle complex side constraints, and may therefore be worth investigating for
other scheduling and routing problems that are currently being solved using MIP or
solve-and-improve approaches.

This chapter also investigated the approach of converting a scheduling problem
with time-varying action costs into a VRPSTW to take advantage of the highly effi-
cient specialised solvers available for the extensively researched VRPSTW. The BPC-
TOP was modelled as a VRPSTW and solved using the existing Indigo VRP solver.
Modelling scheduling problems as a VRP can allow solutions to be found quickly for
large problems; however, if the scheduling problem contains complex cost functions
or side constraints, VRP solvers may not be able to model them accurately, leading
to a reduction in solution quality. However, VRP solvers may be a fast way to solve
simple scheduling problems, or to quickly find an approximate initial solution to use
as input to a more specialised search algorithm.



Chapter 8

Conclusion

8.1 Motivation

Optimisation problems in maritime transportation are an important field of research,
since the majority of the world’s goods are transported by sea, so even small im-
provements in efficiency can translate to multi-million-dollar benefits to the industry.
Optimisation problems in maritime transportation are also often challenging to solve
due to the size of the search space and the complexity of the constraints.

This thesis investigated one previously under-researched area of maritime trans-
portation – the impact of time-varying restrictions on vessel draft on optimisation
problems in the maritime industry. Many ports have restrictions on the draft of ships
that can enter the shallow waters surrounding the port, and these restrictions vary
with the tide, waves, and other environmental conditions. However, existing mar-
itime transportation research has ignored or oversimplified these draft restrictions,
which could lead to ships missing out on opportunities to load more cargo at high
tide.

8.2 Contributions

8.2.1 Bulk Port Cargo Throughput Optimisation Problem

This thesis has incorporated time-varying draft restrictions into several problems in
maritime transportation. First, we introduced a novel problem not previously in-
vestigated in the literature – the Bulk Port Cargo Throughput Optimisation Problem
(BPCTOP), which schedules ship sailing times at a port so as to maximise the total
cargo carried on the set of ships. The schedule must meet port safety rules on al-
lowable sailing draft for each ship, as well as rules on minimum safe separation time
between successive ships, and constraints on the availability of tugs – small boats
which are required at some ports to assist ships travelling in and out of the port.

We presented both Constraint Programming (CP) and Mixed Integer Program-
ming (MIP) models for this problem, and investigated a number of search strategies
for solving the CP model. We found that the CP model solution time was highly
dependent on the search strategy used by the solver – optimal solutions were found
much faster by searching initially on draft, rather than time, since this approach cut
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out poor quality solutions more quickly, and focussed the search on areas of high-
quality solutions. A CP solver with a good choice of model and search strategy was
found to outperform a MIP solver more traditionally used for this problem type.

We also investigated several potential improvements to the CP model, and found
that solver implementation sometimes affected what types of constraints could be
solved efficiently. To create efficient CP models, it was often necessary to precompute
some input data, or specify the constraints in a way that is more efficiently handled
by the CP solver. Some of the improvements that had a strong impact on calculation
time for our model could be automated, and thus suggest potential improvements to
the CP solver, which are summarised in Section 8.3 – Future Work.

Chapter 4 also considered two logic-based Benders decomposition approaches,
but found that one approach used overly complex cuts which did not significantly
reduce calculation time compared to solving the complete model, while the other
approach used overly simplistic cuts which did not cut out enough of the search
space, and thus resulted in too many iterations, even though the individual iterations
were fast to calculate.

We compared the results produced by our model against real schedules created
by human schedulers at Port Hedland in Western Australia, the world’s largest bulk
export port, and found that our schedules would allow 2.04Mt more iron ore to be
transported on the same set of ships as currently sail from Port Hedland each year,
leading to a $154 million increase in profit for shippers, assuming there is sufficient
demand and no bottlenecks in production which would constrain the amount of iron
ore that can be produced. Even if the amount of cargo available to be transported
is constrained by demand or bottlenecks in production, using our more efficient
schedules would save $20.4 million per year in shipping costs by allowing more cargo
to be loaded onto ships, and thus reducing the number of ships that are required to
transport cargo.

The method to solve the BPCTOP has now been incorporated into a commer-
cial system for scheduling ship sailing times at a port – DUKC R© Optimiser – which
was discussed in Chapter 5. This chapter also compared optimal schedules against
constant-draft approaches such as those used in the maritime transportation liter-
ature, as well as simple algorithms similar to those used by human schedulers at
ports. These comparisons illustrate why such approaches may fail to find optimal
schedules even for relatively small problem sizes.

8.2.2 Ship Speed Optimisation with Time-Varying Draft Restrictions

Moving on beyond the BPCTOP, this thesis also investigated the impact of consid-
ering time-varying draft restrictions in problems involving ship speed optimisation.
Fuel costs can comprise up to 75% of the total cost of a voyage, and fuel usage is a
cubic function of ship speed, so ship speed optimisation has been investigated more
frequently in recent years as a means of reducing shipping costs.

This thesis investigated four problems of increasing complexity, all involving
time-varying restrictions on ship draft at waypoints as well as ship speed optimi-
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sation decisions. The first problem was the Speed Optimisation Problem with time-
varying draft restrictions, for a single ship sailing along a fixed route. This approach
built on previous work by Fagerholt, Laporte, and Norstad [2010] and Norstad,
Fagerholt, and Laporte [2011], who compared an approach that discretised arrival
times at each waypoint against a Recursive Smoothing Algorithm which used fea-
tures of the problem to efficiently find optimal solutions. We extended both ap-
proaches to handle time-varying draft restrictions, including the associated multi-
ple time windows at each high tide instead of the single time window considered
by Norstad, Fagerholt, and Laporte [2011]. We also extended this algorithm to work
for non-monotonic cost functions, since the cost function considered in our approach
included the opportunity cost of not being able to use the ship to transport other
cargo, whereas the approach of Norstad, Fagerholt, and Laporte [2011] only min-
imised fuel costs, without considering this opportunity cost.

The initial Speed Optimisation Problem only found optimal speeds for a single
ship with a fixed draft sailing along a fixed route. This problem is of limited use on
its own, but it can be used as a subproblem to assist in solving larger problems. The
first larger problem we considered was the problem of finding the optimal draft and
set of speeds for a single ship sailing along a fixed route. This problem was solved
by simply discretising the drafts, optimising speeds for each draft, and selecting the
optimal draft that balanced fuel costs, opportunity costs of the ship being in use for
a longer period of time, and the opportunity cost of carrying less cargo than the
maximum feasible amount.

The next problem we considered was the Multi-Ship Speed Optimisation Problem
with Time-Varying Draft which optimised drafts and speeds for a set of ships sailing
along a fixed route, close together in time. This problem considered variable ship
speeds, variable draft, time-varying draft restrictions, and resource conflicts between
waypoints caused by multiple ships trying to sail past a shallow waypoint at the
same time, where the waypoint has safety restrictions on the separation time between
successive ships. The conflicts at waypoints were solved using a simplified version
of the BPCTOP as a subproblem, to minimise costs over the set of ships.

Finally, the most complex problem with speed optimisation and time-varying
draft restrictions investigated in this thesis was the Tramp Ship Routing and Schedul-
ing Problem with Speed Optimisation (TSRSPSO), introduced by Norstad, Fagerholt,
and Laporte [2011], extended to consider time-varying draft restrictions as well as
resource conflicts between ships at waypoints. This was solved using a similar ap-
proach to that presented by Norstad, Fagerholt, and Laporte [2011], by creating a
set of initial solutions to the routing problem, evaluating them by solving the Speed
Optimisation Problem for each ship’s route, then iteratively improving the solutions
using local neighbourhood search.

We extended this approach by using the Speed Optimisation Problem with Time-
Varying Draft, and adding waypoint conflict resolution. Our approach produced
schedules with 22.59% higher profit compared to the traditional approaches of sail-
ing at service speed and ignoring draft restrictions in scheduling and waiting at
waypoints for the tide to rise if required. The speed optimisation approach intro-
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duced by Norstad, Fagerholt, and Laporte [2011] resulted in a 15.34% improvement
in profit on its own, without considering draft restrictions, so draft restrictions ac-
count for the remaining difference. The 15.34% improvement is similar to the results
observed by Norstad, Fagerholt, and Laporte [2011].

8.2.3 Scheduling and Routing with Time-Varying Action Costs

The final contribution of this thesis is to consider more generally the problem of
scheduling and routing with time-varying action costs.

It is clear that time-varying draft restrictions are valuable to consider in mar-
itime optimisation approaches, since accurate consideration of draft restrictions al-
lows ships to load more cargo by sailing at high tide. However, time-varying draft
restrictions significantly increase the complexity of the problem, so we also investi-
gated other scheduling and routing problems in related fields that have time-varying
action costs or values, and applied a number of approaches that were found to be
effective for these problems to the BPCTOP as well as another problem in maritime
transportation – the Liner Shipping Fleet Repositioning Problem (LSFRP). The LSFRP
investigations were conducted by Kevin Tierney.

We developed a CP model for the LSFRP in joint work with Kevin Tierney, and
compared it against existing MIP and automated planning approaches to find that the
CP model could be solved to optimality faster on average than existing approaches.
We also solved both the BPCTOP and LSFRP problem sets with a CP solver that
uses Lazy Clause Generation to learn areas of the search space where the search
previously failed. The LCG solver was able to find solutions faster than traditional
finite domain CP solvers, so Lazy Clause Generation may be worth testing for other
scheduling and routing problems.

We investigated a solve-and-improve approach traditionally used for solving prob-
lems with complex cost functions by simplifying the cost functions for the BPCTOP
to windows of "good enough" quality, and for the LSFRP by setting the sailing speeds
of each ship to the minimum value initially. However, we found that this approach
did not significantly reduce the time required to solve the problem compared to the
impact of switching from a MIP/planning model to a CP model for the LSFRP, or
switching from a finite domain solver to a LCG solver for the BPCTOP.

Finally, we converted the BPCTOP to a Vehicle Routing Problem, to investigate
whether a fast VRP solver that was able to handle soft time window constraints
would solve this problem faster than more general CP and MIP solvers. We found
that the VRP solver was able to find solutions for large problems quickly; however,
the solver’s ability to model complex side constraints limited the accuracy of our
VRP model, so the VRP solver was unable to find optimal solutions. Converting
a scheduling problem to a VRP and solving it using a VRP solver is unlikely to
produce optimal solutions for problems with complex side constraints; however, it
may be useful as a method of finding "good enough" solutions quickly, perhaps to
use as a starting point for a more complex optimal method.
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8.3 Future Work

The largest and most complex area of future research arising from this thesis is to
extend more problems in maritime transportation to consider time-varying draft re-
strictions. Given the prevalence of draft-restricted ports worldwide, there are likely
to be many more problems where accurate consideration of draft restrictions would
allow ships to load more cargo, leading to significant benefits to industry. Further in-
vestigation of such problems is likely to be not only an interesting area of academic
research, but may lead to significant commercial opportunities. This thesis intro-
duced time-varying draft restrictions into a cargo routing problem with one cargo
carried per ship; one natural extension of this problem would be to consider multi-
ple cargoes carried per ship, as the order of deliveries would also affect the draft of
the ship at each port, similarly to the Traveling Salesman Problem with draft limits
considered by Rakke et al. [2012]. Maritime inventory routing problems with time-
varying draft restrictions would also be worth investigating. The Berth Allocation
Problem would also benefit from considering draft restrictions, since draft restric-
tions may limit feasible ship arrival times and amounts of cargo carried. Different
berths may also have their own draft restrictions in addition to the port as a whole.

Another large area of future research for all the problems presented in this the-
sis is the consideration of uncertainty. Ship routing and scheduling problems with
time-varying draft involve uncertainty arising from several factors, including envi-
ronmental conditions that affect allowable draft; equipment breakdowns and ship
loading delays. There has been some research on ship scheduling with uncertainty,
for example Christiansen and Fagerholt [2002]; Hwang, Visoldilokpun, and Rosen-
berger [2008]. However, uncertainty in draft constraints or the amount of cargo that
can be carried on each ship has not yet been investigated. In this thesis, we account
for uncertainty by using a conservative method for calculating the allowable draft;
however, more thorough investigation into handling uncertainty, robust schedules,
and recovering from disruptions for this problem would be very valuable.

As this thesis introduced a number of new problems in maritime transportation,
there are also a number of potential directions for future research into algorithms for
solving those problems in particular. A few of these are summarised below.

Potential Improvements for the BPCTOP

• Integration with land-side supply chain optimisation: many export ports have con-
straints in the supply chain which limit the amount of cargo that may be avail-
able for loading at any point in time. This may also limit the benefit of increased
drafts if there is insufficient cargo available to load the ship fully. Extending the
BPCTOP to combine it with mining supply chain optimisation problems would
allow shippers to make the best use of increased draft even when mining sup-
ply chain constraints limit the amount of cargo available.
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• Continuous-time formulation: the models presented in this thesis for the BPCTOP
used time-indexed formulations to model the allowable draft for each ship by
specifying it at every 5-minute interval. A continuous-time formulation, such
as the concept of event points proposed by Ierapetritou and Floudas [1998a]
and Ierapetritou and Floudas [1998b], may reduce the problem size resulting
in significant speedup. However, since the allowable draft for each ship varies
with time and does not have a simple algebraic formulation, modelling this
problem with a continuous-time formulation is a non-trivial task. One possible
approach could be to start with a simple linear approximation to the draft
function for each ship and to iteratively increase the resolution; however, other
approaches may also be worth investigating.

• The Benders decomposition approach introduced in Chapter 4 may be worth in-
vestigating further, as there may be alternative cuts that balance complexity
of calculation with effectiveness of removing large enough areas of the search
space.

• Faster close-to-optimal approaches, eg. local search with a good heuristic, are
worth investigating for the BPCTOP, as such approaches are likely to produce
significant speedups in search and may produce results that are close to opti-
mal. Local search techniques have been used successfully in other ship routing
and scheduling problems, for example by Brønmo et al. [2007] and Gunnarson,
Rönnqvist, and Carlsson [2006].

Potential Improvements in Speed Optimisation

• Considering variable draft for each leg of each ship’s route could reduce shipping
costs further. The approach presented in this thesis used a simple approxima-
tion to set the draft for each ship to one that would get reasonably wide win-
dows. Allowing the draft to vary independently for each cargo would make the
problem significantly more complex to solve, but could significantly improve
results. One approach to varying the draft of ships for each cargo could be to
introduce a new local search operator which would change the amount of a
single cargo on a ship by fixed increments.

• Considering ocean currents in travel time calculations for each leg of each ship’s
route. The models presented in this thesis assume that the travel time for each
leg of each voyage is constant. However, in reality, travel times may be affected
by ocean currents which vary over time. Extending the models to consider the
effect of ocean currents on travel time would further improve the results.

• Global optimisation approach: the approach used to handle resource conflicts be-
tween ships at waypoints is to first optimise speeds for each ship indepen-
dently, then resolve conflicts for waypoints one at a time, adjusting ship speeds
to and from adjacent waypoints. However, this approach may get stuck in local
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minima, and better quality schedules could be obtained by a global optimisa-
tion approach that considers the entire multi-ship routing, speed optimisation
and waypoint conflict resolution problem as a whole. Such a global approach
would, however, be very complex to solve.

• Faster methods for subproblems could significantly improve the calculation
speed of the combined routing and scheduling problem. For example, a dy-
namic programming approach could be worth investigating for the Speed Op-
timisation Problem with a single ship. Speed improvement methods for the
waypoint conflict resolution problem could arise from further research into fast
algorithms for solving the BPCTOP, discussed above.

Potential Improvements in Generalised Approaches

• Other optimisation problems may benefit from considering time-dependent task costs,
as this would increase their realism and thereby their relevance to industry. For
example, adding time-varying draft restrictions to other maritime transporta-
tion problems, or adding detailed traffic congestion modelling to problems
like inter-terminal transportation delay reduction at container terminals Tier-
ney, Voß, and Stahlbock [2013]. A number of vehicle routing applications
could benefit from a view of time-dependent travel durations as in Malan-
draki and Daskin [1992] or the pollution routing problem [Bektaş and Laporte,
2011; Franceschetti et al., 2012]. Although adding time-dependent task costs to
these problems would likely increase the solving difficulty, the benefits of more
closely matching real-world processes is worth the trade-off.

• Constraint Programming approaches may be worth investigating for other problems,
since we found that CP solvers, particularly those with Lazy Clause Generation,
could solve some problems more efficiently than traditional MIP approaches.
However, CP model solution time was highly dependent on the choice of model
and search strategy, so creating effective CP models for other problems may
require substantial research.

• Further investigation into modelling scheduling problems as Vehicle Routing Problems
could be beneficial, particularly as VRP solvers become able to deal with a
wider variety of complex side constraints.

8.4 Summary

Optimisation problems based on real-world scenarios often have complex constraints
or objectives. Modelling these accurately make an optimisation problem more closely
match the real world, but this can also make the problem more difficult to solve.
This thesis investigated a particular example where time-varying objectives and con-
straints have previously been simplified away – draft restrictions in maritime trans-
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portation, which allow ships to carry more cargo at high tide when there is more
water for the ship to sail in.

Existing optimisation problems in maritime transportation either ignored draft
restrictions entirely, or modelled them very simply, as a constant limit rather than
varying every few minutes with the height of the tide. However, the results pre-
sented in this thesis showed that accurately modelling draft restrictions in maritime
transportation problems can significantly reduce shipping costs or allow more cargo
to be transported on the same set of ships for problems involving draft-restricted
ports. Comparisons against both human schedulers at a real port and against exist-
ing academic approaches showed that consideration of time-varying draft restrictions
has large potential benefits to industry.

Finally, this thesis investigated approaches to routing and scheduling with time-
varying action costs in related fields, and found that some approaches such as Con-
straint Programming and Lazy Clause Generation could solve some problems faster
than Mixed Integer Programming, which is traditionally used to solve such prob-
lems.

We hope that this research will inspire more optimisation researchers to consider
accurate modelling of complex constraints and objective functions in their work to
make their models more accurately reflect reality and produce better quality solu-
tions, both in maritime transportation problems which may benefit from considering
time-varying draft restrictions, and in related fields.

All scripts used for generating test data and running the experiments described
in this thesis will be made available at http://users.cecs.anu.edu.au/~pjk/ShipSched/

http://users.cecs.anu.edu.au/~pjk/ShipSched/
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